Cargando…
Monotonicity, Concavity, and Convexity of Fractional Derivative of Functions
The monotonicity of the solutions of a class of nonlinear fractional differential equations is studied first, and the existing results were extended. Then we discuss monotonicity, concavity, and convexity of fractional derivative of some functions and derive corresponding criteria. Several examples...
Autores principales: | Zhou, Xian-Feng, Liu, Song, Zhang, Zhixin, Jiang, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3835843/ https://www.ncbi.nlm.nih.gov/pubmed/24302864 http://dx.doi.org/10.1155/2013/605412 |
Ejemplares similares
-
Fractional Hermite–Hadamard inequalities for [Formula: see text] -convex or s-concave functions
por: Lian, Tieyan, et al.
Publicado: (2018) -
Convex functions, monotone operators and differentiability
por: Phelps, Robert R
Publicado: (1989) -
Convex functions, monotone operators and differentiability
por: Phelps, Robert R
Publicado: (1993) -
Shape recognition: convexities, concavities and things in between
por: Schmidtmann, Gunnar, et al.
Publicado: (2015) -
Trichalcogenasupersumanenes and its concave-convex supramolecular assembly with fullerenes
por: Sun, Yixun, et al.
Publicado: (2023)