Cargando…
A Characterization of the Compound Multiparameter Hermite Gamma Distribution via Gauss's Principle
We consider the class of those distributions that satisfy Gauss's principle (the maximum likelihood estimator of the mean is the sample mean) and have a parameter orthogonal to the mean. It is shown that this so-called “mean orthogonal class” is closed under convolution. A previous characteriza...
Autor principal: | Hürlimann, Werner |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3835847/ https://www.ncbi.nlm.nih.gov/pubmed/24298220 http://dx.doi.org/10.1155/2013/468418 |
Ejemplares similares
-
A Weighted Measurement Fusion Particle Filter for Nonlinear Multisensory Systems Based on Gauss–Hermite Approximation
por: Li, Yun, et al.
Publicado: (2017) -
Laplace approximation, penalized quasi-likelihood, and adaptive Gauss–Hermite quadrature for generalized linear mixed models: towards meta-analysis of binary outcome with sparse data
por: Ju, Ke, et al.
Publicado: (2020) -
The Hermit Crab
Publicado: (1919) -
Hermite–Hadamard inequalities and their applications
por: Mihai, Marcela V., et al.
Publicado: (2018) -
Gauß: eine Biographie
por: Mania, Hubert
Publicado: (2009)