Cargando…

Exploring Different Virtual Screening Strategies for Acetylcholinesterase Inhibitors

The virtual screening problems associated with acetylcholinesterase (AChE) inhibitors were explored using multiple shape, and structure-based modeling strategies. The employed strategies include molecular docking, similarity search, and pharmacophore modeling. A subset from directory of useful decoy...

Descripción completa

Detalles Bibliográficos
Autores principales: Mishra, Nibha, Basu, Arijit
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3835907/
https://www.ncbi.nlm.nih.gov/pubmed/24294601
http://dx.doi.org/10.1155/2013/236850
Descripción
Sumario:The virtual screening problems associated with acetylcholinesterase (AChE) inhibitors were explored using multiple shape, and structure-based modeling strategies. The employed strategies include molecular docking, similarity search, and pharmacophore modeling. A subset from directory of useful decoys (DUD) related to AChE inhibitors was considered, which consists of 105 known inhibitors and 3732 decoys. Statistical quality of the models was evaluated by enrichment factor (EF) metrics and receiver operating curve (ROC) analysis. The results revealed that electrostatic similarity search protocol using EON (ET_combo) outperformed all other protocols with outstanding enrichment of >95% in top 1% and 2% of the dataset with an AUC of 0.958. Satisfactory performance was also observed for shape-based similarity search protocol using ROCS and PHASE. In contrast, the molecular docking protocol performed poorly with enrichment factors <30% in all cases. The shape- and electrostatic-based similarity search protocol emerged as a plausible solution for virtual screening of AChE inhibitors.