Cargando…

Decreased Circulatory Response to Hypovolemic Stress in Young Women With Type 1 Diabetes

OBJECTIVE: Diabetes is associated with hemodynamic instability during different situations involving acute circulatory stress in daily life. Young men with type 1 diabetes have been shown to have impaired circulatory response to hypovolemic stress. The effect of type 1 diabetes on cardiovascular res...

Descripción completa

Detalles Bibliográficos
Autores principales: Lindenberger, Marcus, Lindström, Torbjörn, Länne, Toste
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Diabetes Association 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836157/
https://www.ncbi.nlm.nih.gov/pubmed/24130342
http://dx.doi.org/10.2337/dc13-0468
Descripción
Sumario:OBJECTIVE: Diabetes is associated with hemodynamic instability during different situations involving acute circulatory stress in daily life. Young men with type 1 diabetes have been shown to have impaired circulatory response to hypovolemic stress. The effect of type 1 diabetes on cardiovascular response to hypovolemia in young women is unknown, however. RESEARCH DESIGN AND METHODS: Lower body negative pressure of 30 cm H(2)O was used to create rapid hypovolemic stress in 15 young women with type 1 diabetes (DW) and 16 healthy women (control subjects [C]). Compensatory mobilization of venous capacitance blood (capacitance response) and net fluid absorption from tissue to blood were measured with a volumetric technique. Overall cardiovascular responses and plasma norepinephrine levels were measured. RESULTS: Capacitance response was reduced (DW, 0.67 ± 0.05; C, 0.92 ± 0.06) and developed slower in DW (P < 0.01). Capacitance response was further reduced with increasing levels of HbA(1c). Fluid absorption was almost halved in DW (P < 0.01). The initial vasoconstrictor response was reduced and developed slower in DW (P < 0.05). Arterial vasoconstriction was further reduced in the presence of microvascular complications (P < 0.05). CONCLUSIONS: DW present with decreased and slower mobilization of venous capacitance blood and decreased net fluid absorption from tissue to blood during hypovolemic circulatory stress. Collectively, this indicates that DW are prone to hemodynamic instability, especially in the presence of microvascular complications and poor glycemic control.