Cargando…
Harnessing Diversity towards the Reconstructing of Large Scale Gene Regulatory Networks
Elucidating gene regulatory network (GRN) from large scale experimental data remains a central challenge in systems biology. Recently, numerous techniques, particularly consensus driven approaches combining different algorithms, have become a potentially promising strategy to infer accurate GRNs. He...
Autores principales: | Hase, Takeshi, Ghosh, Samik, Yamanaka, Ryota, Kitano, Hiroaki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836705/ https://www.ncbi.nlm.nih.gov/pubmed/24278007 http://dx.doi.org/10.1371/journal.pcbi.1003361 |
Ejemplares similares
-
Combining Machine Learning Systems and Multiple Docking Simulation Packages to Improve Docking Prediction Reliability for Network Pharmacology
por: Hsin, Kun-Yi, et al.
Publicado: (2013) -
Toward an integrated software platform for systems pharmacology
por: Ghosh, Samik, et al.
Publicado: (2013) -
Gene regulatory network reconstruction: harnessing the power of single-cell multi-omic data
por: Kim, Daniel, et al.
Publicado: (2023) -
Large-Scale Analysis of Network Bistability for Human Cancers
por: Shiraishi, Tetsuya, et al.
Publicado: (2010) -
Multi-dimensional computational pipeline for large-scale deep screening of compound effect assessment: an in silico case study on ageing-related compounds
por: Gupta, Vipul, et al.
Publicado: (2019)