Cargando…
Beyond GLMs: A Generative Mixture Modeling Approach to Neural System Identification
Generalized linear models (GLMs) represent a popular choice for the probabilistic characterization of neural spike responses. While GLMs are attractive for their computational tractability, they also impose strong assumptions and thus only allow for a limited range of stimulus-response relationships...
Autores principales: | Theis, Lucas, Chagas, Andrè Maia, Arnstein, Daniel, Schwarz, Cornelius, Bethge, Matthias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836720/ https://www.ncbi.nlm.nih.gov/pubmed/24278006 http://dx.doi.org/10.1371/journal.pcbi.1003356 |
Ejemplares similares
-
Robust fitting of mixtures of GLMs by weighted likelihood
por: Greco, Luca
Publicado: (2021) -
Mixtures of Conditional Gaussian Scale Mixtures Applied to Multiscale Image Representations
por: Theis, Lucas, et al.
Publicado: (2012) -
Functional analysis of ultra high information rates conveyed by rat vibrissal primary afferents
por: Chagas, André M., et al.
Publicado: (2013) -
Approximate inference for spatial GLMs
por: Eidsvik, Jo, et al.
Publicado: (2006) -
Using GLMs to recover sparse connectivity in complex networks
por: Cook, Daniel, et al.
Publicado: (2010)