Cargando…

Prevention of Obesity and Insulin Resistance by Estrogens Requires ERα Activation Function-2 (ERαAF-2), Whereas ERαAF-1 Is Dispensable

The beneficial metabolic actions of estrogen-based therapies are mainly mediated by estrogen receptor α (ERα), a nuclear receptor that regulates gene transcription through two activation functions (AFs): AF-1 and AF-2. Using mouse models deleted electively for ERαAF-1 (ERαAF-1°) or ERαAF-2 (ERαAF-2°...

Descripción completa

Detalles Bibliográficos
Autores principales: Handgraaf, Sandra, Riant, Elodie, Fabre, Aurélie, Waget, Aurélie, Burcelin, Rémy, Lière, Philippe, Krust, Andrée, Chambon, Pierre, Arnal, Jean-François, Gourdy, Pierre
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Diabetes Association 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3837069/
https://www.ncbi.nlm.nih.gov/pubmed/23903353
http://dx.doi.org/10.2337/db13-0282
Descripción
Sumario:The beneficial metabolic actions of estrogen-based therapies are mainly mediated by estrogen receptor α (ERα), a nuclear receptor that regulates gene transcription through two activation functions (AFs): AF-1 and AF-2. Using mouse models deleted electively for ERαAF-1 (ERαAF-1°) or ERαAF-2 (ERαAF-2°), we determined their respective roles in the actions of estrogens on body composition and glucose homeostasis in response to either a normal diet or a high-fat diet (HFD). ERαAF-2° males and females developed accelerated weight gain, massive adiposity, severe insulin resistance, and glucose intolerance—quite reminiscent of the phenotype observed in mice deleted for the entire ERα protein (ERα(−/−)). In striking contrast, ERαAF-1° and wild-type (wt) mice shared a similar metabolic phenotype. Accordingly, 17β-estradiol administration regulated key metabolic genes in insulin-sensitive tissues and conferred a strong protection against HFD-induced metabolic disturbances in wt and ERαAF-1° ovariectomized mice, whereas these actions were totally abrogated in ERαAF-2° and ERα(−/−) mice. Thus, whereas both AFs have been previously shown to contribute to endometrial and breast cancer cell proliferation, the protective effect of estrogens against obesity and insulin resistance depends on ERαAF-2 but not ERαAF-1, thereby delineating new options for selective modulation of ERα.