Cargando…
Multi-atlas segmentation with joint label fusion and corrective learning—an open source implementation
Label fusion based multi-atlas segmentation has proven to be one of the most competitive techniques for medical image segmentation. This technique transfers segmentations from expert-labeled images, called atlases, to a novel image using deformable image registration. Errors produced by label transf...
Autores principales: | Wang, Hongzhi, Yushkevich, Paul A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3837555/ https://www.ncbi.nlm.nih.gov/pubmed/24319427 http://dx.doi.org/10.3389/fninf.2013.00027 |
Ejemplares similares
-
Integrating Semi-supervised and Supervised Learning Methods for Label Fusion in Multi-Atlas Based Image Segmentation
por: Zheng, Qiang, et al.
Publicado: (2018) -
Robust Automated Amygdala Segmentation via Multi-Atlas Diffeomorphic Registration
por: Hanson, Jamie L., et al.
Publicado: (2012) -
An Open-Source Label Atlas Correction Tool and Preliminary Results on Huntingtons Disease Whole-Brain MRI Atlases
por: Forbes, Jessica L., et al.
Publicado: (2016) -
Systematic Fusion of Multi-Source Cognitive Networks With Graph Learning - A Study on Fronto-Parietal Network
por: Zhang, Xiaofei, et al.
Publicado: (2022) -
Dual consistent pseudo label generation for multi-source domain adaptation without source data for medical image segmentation
por: Cai, Binke, et al.
Publicado: (2023)