Cargando…

Combined R-α–lipoic acid and acetyl-L-carnitine exerts efficient preventative effects in a cellular model of Parkinson’s disease

Mitochondrial dysfunction and oxidative damage are highly involved in the pathogenesis of Parkinson’s disease (PD). Some mitochondrial antioxidants/nutrients that can improve mitochondrial function and/or attenuate oxidative damage have been implicated in PD therapy. However, few studies have evalua...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Hongyu, Jia, Haiqun, Liu, Jianghai, Ao, Ni, Yan, Bing, Shen, Weili, Wang, Xuemin, Li, Xin, Luo, Cheng, Liu, Jiankang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3837594/
https://www.ncbi.nlm.nih.gov/pubmed/20414966
http://dx.doi.org/10.1111/j.1582-4934.2008.00390.x
Descripción
Sumario:Mitochondrial dysfunction and oxidative damage are highly involved in the pathogenesis of Parkinson’s disease (PD). Some mitochondrial antioxidants/nutrients that can improve mitochondrial function and/or attenuate oxidative damage have been implicated in PD therapy. However, few studies have evaluated the preventative effects of a combination of mitochondrial antioxidants/nutrients against PD, and even fewer have sought to optimize the doses of the combined agents. The present study examined the preventative effects of two mitochondrial antioxidant/nutrients, R-α–lipoic acid (LA) and acetyl-L-carnitine (ALC), in a chronic rotenone-induced cellular model of PD. We demonstrated that 4-week pretreatment with LA and/or ALC effectively protected SK-N-MC human neuroblastoma cells against rotenone-induced mitochondrial dysfunction, oxidative damage and accumulation of α-synuclein and ubiquitin. Most notably, we found that when combined, LA and ALC worked at 100–1000-fold lower concentrations than they did individually. We also found that pretreatment with combined LA and ALC increased mitochondrial biogenesis and decreased production of reactive oxygen species through the up-regulation of the peroxisome proliferator-activated receptor-γ coactivator 1α as a possible underlying mechanism. This study provides important evidence that combining mitochondrial antioxidant/nutrients at optimal doses might be an effective and safe prevention strategy for PD.