Cargando…
Genetic transfer of fusion proteins effectively inhibits VCAM-1-mediated cell adhesion and transmigration via inhibition of cytoskeletal anchorage
The adhesion of leukocytes to endothelium plays a central role in the development of atherosclerosis and thus represents an attractive therapeutic target for anti-atherosclerotic therapies. Vascular cell adhesion molecule-1 (VCAM-1) mediates both the initial tethering and the firm adhesion of leukoc...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3837607/ https://www.ncbi.nlm.nih.gov/pubmed/20414973 http://dx.doi.org/10.1111/j.1582-4934.2008.00409.x |
_version_ | 1782478316281790464 |
---|---|
author | Hagemeyer, Christoph E Ahrens, Ingo Bassler, Nicole Dschachutaschwili, Natia Chen, Yung C Eisenhardt, Steffen U Bode, Christoph Peter, Karlheinz |
author_facet | Hagemeyer, Christoph E Ahrens, Ingo Bassler, Nicole Dschachutaschwili, Natia Chen, Yung C Eisenhardt, Steffen U Bode, Christoph Peter, Karlheinz |
author_sort | Hagemeyer, Christoph E |
collection | PubMed |
description | The adhesion of leukocytes to endothelium plays a central role in the development of atherosclerosis and thus represents an attractive therapeutic target for anti-atherosclerotic therapies. Vascular cell adhesion molecule-1 (VCAM-1) mediates both the initial tethering and the firm adhesion of leukocytes to endothelial cells. Our work evaluates the feasibility of using the cytoskeletal anchorage of VCAM-1 as a target for gene therapy. As a proof of concept, integrin α(IIb)β(3)-mediated cell adhesion with clearly defined cytoskeletal anchorage was tested. We constructed fusion proteins containing the intracellular domain of β(3) placed at various distances to the cell membrane. Using cell adhesion assays and immunofluorescence, we established fusion constructs with competitive and dominant negative inhibition of cell adhesion. With the goal being the transfer of the dominant negative mechanism towards VCAM-1 inhibition, we constructed a fusion molecule containing the cytoplasmic domain of VCAM-1. Indeed, VCAM-1 mediated leukocyte adhesion can be inhibited via transfection of DNA encoding the designed VCAM-1 fusion protein. This is demonstrated in adhesion assays under static and flow conditions using CHO cells expressing recombinant VCAM-1 as well as activated endothelial cells. Thus, we are able to describe a novel approach for dominant negative inhibition of leukocyte adhesion to endothelial cells. This approach warrants further development as a novel gene therapeutic strategy that aims for a locally restricted effect at atherosclerotic areas of the vasculature. |
format | Online Article Text |
id | pubmed-3837607 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Blackwell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-38376072015-04-24 Genetic transfer of fusion proteins effectively inhibits VCAM-1-mediated cell adhesion and transmigration via inhibition of cytoskeletal anchorage Hagemeyer, Christoph E Ahrens, Ingo Bassler, Nicole Dschachutaschwili, Natia Chen, Yung C Eisenhardt, Steffen U Bode, Christoph Peter, Karlheinz J Cell Mol Med Articles The adhesion of leukocytes to endothelium plays a central role in the development of atherosclerosis and thus represents an attractive therapeutic target for anti-atherosclerotic therapies. Vascular cell adhesion molecule-1 (VCAM-1) mediates both the initial tethering and the firm adhesion of leukocytes to endothelial cells. Our work evaluates the feasibility of using the cytoskeletal anchorage of VCAM-1 as a target for gene therapy. As a proof of concept, integrin α(IIb)β(3)-mediated cell adhesion with clearly defined cytoskeletal anchorage was tested. We constructed fusion proteins containing the intracellular domain of β(3) placed at various distances to the cell membrane. Using cell adhesion assays and immunofluorescence, we established fusion constructs with competitive and dominant negative inhibition of cell adhesion. With the goal being the transfer of the dominant negative mechanism towards VCAM-1 inhibition, we constructed a fusion molecule containing the cytoplasmic domain of VCAM-1. Indeed, VCAM-1 mediated leukocyte adhesion can be inhibited via transfection of DNA encoding the designed VCAM-1 fusion protein. This is demonstrated in adhesion assays under static and flow conditions using CHO cells expressing recombinant VCAM-1 as well as activated endothelial cells. Thus, we are able to describe a novel approach for dominant negative inhibition of leukocyte adhesion to endothelial cells. This approach warrants further development as a novel gene therapeutic strategy that aims for a locally restricted effect at atherosclerotic areas of the vasculature. Blackwell Publishing Ltd 2010 2008-07-09 /pmc/articles/PMC3837607/ /pubmed/20414973 http://dx.doi.org/10.1111/j.1582-4934.2008.00409.x Text en © 2008 The Authors Journal compilation © 2010 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd |
spellingShingle | Articles Hagemeyer, Christoph E Ahrens, Ingo Bassler, Nicole Dschachutaschwili, Natia Chen, Yung C Eisenhardt, Steffen U Bode, Christoph Peter, Karlheinz Genetic transfer of fusion proteins effectively inhibits VCAM-1-mediated cell adhesion and transmigration via inhibition of cytoskeletal anchorage |
title | Genetic transfer of fusion proteins effectively inhibits VCAM-1-mediated cell adhesion and transmigration via inhibition of cytoskeletal anchorage |
title_full | Genetic transfer of fusion proteins effectively inhibits VCAM-1-mediated cell adhesion and transmigration via inhibition of cytoskeletal anchorage |
title_fullStr | Genetic transfer of fusion proteins effectively inhibits VCAM-1-mediated cell adhesion and transmigration via inhibition of cytoskeletal anchorage |
title_full_unstemmed | Genetic transfer of fusion proteins effectively inhibits VCAM-1-mediated cell adhesion and transmigration via inhibition of cytoskeletal anchorage |
title_short | Genetic transfer of fusion proteins effectively inhibits VCAM-1-mediated cell adhesion and transmigration via inhibition of cytoskeletal anchorage |
title_sort | genetic transfer of fusion proteins effectively inhibits vcam-1-mediated cell adhesion and transmigration via inhibition of cytoskeletal anchorage |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3837607/ https://www.ncbi.nlm.nih.gov/pubmed/20414973 http://dx.doi.org/10.1111/j.1582-4934.2008.00409.x |
work_keys_str_mv | AT hagemeyerchristophe genetictransferoffusionproteinseffectivelyinhibitsvcam1mediatedcelladhesionandtransmigrationviainhibitionofcytoskeletalanchorage AT ahrensingo genetictransferoffusionproteinseffectivelyinhibitsvcam1mediatedcelladhesionandtransmigrationviainhibitionofcytoskeletalanchorage AT basslernicole genetictransferoffusionproteinseffectivelyinhibitsvcam1mediatedcelladhesionandtransmigrationviainhibitionofcytoskeletalanchorage AT dschachutaschwilinatia genetictransferoffusionproteinseffectivelyinhibitsvcam1mediatedcelladhesionandtransmigrationviainhibitionofcytoskeletalanchorage AT chenyungc genetictransferoffusionproteinseffectivelyinhibitsvcam1mediatedcelladhesionandtransmigrationviainhibitionofcytoskeletalanchorage AT eisenhardtsteffenu genetictransferoffusionproteinseffectivelyinhibitsvcam1mediatedcelladhesionandtransmigrationviainhibitionofcytoskeletalanchorage AT bodechristoph genetictransferoffusionproteinseffectivelyinhibitsvcam1mediatedcelladhesionandtransmigrationviainhibitionofcytoskeletalanchorage AT peterkarlheinz genetictransferoffusionproteinseffectivelyinhibitsvcam1mediatedcelladhesionandtransmigrationviainhibitionofcytoskeletalanchorage |