Cargando…

Telomere attrition and genomic instability in xeroderma pigmentosum type-b deficient fibroblasts under oxidative stress

Xeroderma pigmentosum B (XPB/ERCC3/p89) is an ATP-dependent 3′→5′ directed DNA helicase involved in basal RNA transcription and the nucleotide excision repair (NER) pathway. While the role of NER in alleviating oxidative DNA damage has been acknowledged it remains poorly understood. To study the inv...

Descripción completa

Detalles Bibliográficos
Autores principales: Ting, Aloysius Poh Leong, Low, Grace Kah Mun, Gopalakrishnan, Kalpana, Hande, M Prakash
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3837611/
https://www.ncbi.nlm.nih.gov/pubmed/19840190
http://dx.doi.org/10.1111/j.1582-4934.2009.00945.x
_version_ 1782478317218168832
author Ting, Aloysius Poh Leong
Low, Grace Kah Mun
Gopalakrishnan, Kalpana
Hande, M Prakash
author_facet Ting, Aloysius Poh Leong
Low, Grace Kah Mun
Gopalakrishnan, Kalpana
Hande, M Prakash
author_sort Ting, Aloysius Poh Leong
collection PubMed
description Xeroderma pigmentosum B (XPB/ERCC3/p89) is an ATP-dependent 3′→5′ directed DNA helicase involved in basal RNA transcription and the nucleotide excision repair (NER) pathway. While the role of NER in alleviating oxidative DNA damage has been acknowledged it remains poorly understood. To study the involvement of XPB in repair of oxidative DNA damage, we utilized primary fibroblasts from a patient suffering from XP with Cockayne syndrome and hydrogen peroxide (H(2)O(2)) to induce oxidative stress. Mutant cells retained higher viability and cell cycle dysfunction after H(2)O(2) exposure. Cytokinesis blocked micronucleus assay revealed increased genome instability induced by H(2)O(2). Single cell gel electrophoresis (comet) assay showed that the missense mutation caused a reduced repair capacity for oxidative DNA damage. Mutant fibroblasts also displayed decreased population doubling rate, increased telomere attrition rate and early emergence of senescent characteristics under chronic low dose exposure to H(2)O(2). Fibroblasts from a heterozygous individual displayed intermediate traits in some assays and normal traits in others, indicating possible copy number dependence. The results show that a deficiency in functional XPB paradoxically renders cells more sensitive to the genotoxic effects of oxidative stress while reducing the cytotoxic effects. These findings have implications in the mechanisms of DNA repair, mutagenesis and carcinogenesis and ageing in normal physiological systems.
format Online
Article
Text
id pubmed-3837611
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher Blackwell Publishing Ltd
record_format MEDLINE/PubMed
spelling pubmed-38376112015-04-24 Telomere attrition and genomic instability in xeroderma pigmentosum type-b deficient fibroblasts under oxidative stress Ting, Aloysius Poh Leong Low, Grace Kah Mun Gopalakrishnan, Kalpana Hande, M Prakash J Cell Mol Med Articles Xeroderma pigmentosum B (XPB/ERCC3/p89) is an ATP-dependent 3′→5′ directed DNA helicase involved in basal RNA transcription and the nucleotide excision repair (NER) pathway. While the role of NER in alleviating oxidative DNA damage has been acknowledged it remains poorly understood. To study the involvement of XPB in repair of oxidative DNA damage, we utilized primary fibroblasts from a patient suffering from XP with Cockayne syndrome and hydrogen peroxide (H(2)O(2)) to induce oxidative stress. Mutant cells retained higher viability and cell cycle dysfunction after H(2)O(2) exposure. Cytokinesis blocked micronucleus assay revealed increased genome instability induced by H(2)O(2). Single cell gel electrophoresis (comet) assay showed that the missense mutation caused a reduced repair capacity for oxidative DNA damage. Mutant fibroblasts also displayed decreased population doubling rate, increased telomere attrition rate and early emergence of senescent characteristics under chronic low dose exposure to H(2)O(2). Fibroblasts from a heterozygous individual displayed intermediate traits in some assays and normal traits in others, indicating possible copy number dependence. The results show that a deficiency in functional XPB paradoxically renders cells more sensitive to the genotoxic effects of oxidative stress while reducing the cytotoxic effects. These findings have implications in the mechanisms of DNA repair, mutagenesis and carcinogenesis and ageing in normal physiological systems. Blackwell Publishing Ltd 2010 2009-10-16 /pmc/articles/PMC3837611/ /pubmed/19840190 http://dx.doi.org/10.1111/j.1582-4934.2009.00945.x Text en © 2009 The Authors Journal compilation © 2010 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd
spellingShingle Articles
Ting, Aloysius Poh Leong
Low, Grace Kah Mun
Gopalakrishnan, Kalpana
Hande, M Prakash
Telomere attrition and genomic instability in xeroderma pigmentosum type-b deficient fibroblasts under oxidative stress
title Telomere attrition and genomic instability in xeroderma pigmentosum type-b deficient fibroblasts under oxidative stress
title_full Telomere attrition and genomic instability in xeroderma pigmentosum type-b deficient fibroblasts under oxidative stress
title_fullStr Telomere attrition and genomic instability in xeroderma pigmentosum type-b deficient fibroblasts under oxidative stress
title_full_unstemmed Telomere attrition and genomic instability in xeroderma pigmentosum type-b deficient fibroblasts under oxidative stress
title_short Telomere attrition and genomic instability in xeroderma pigmentosum type-b deficient fibroblasts under oxidative stress
title_sort telomere attrition and genomic instability in xeroderma pigmentosum type-b deficient fibroblasts under oxidative stress
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3837611/
https://www.ncbi.nlm.nih.gov/pubmed/19840190
http://dx.doi.org/10.1111/j.1582-4934.2009.00945.x
work_keys_str_mv AT tingaloysiuspohleong telomereattritionandgenomicinstabilityinxerodermapigmentosumtypebdeficientfibroblastsunderoxidativestress
AT lowgracekahmun telomereattritionandgenomicinstabilityinxerodermapigmentosumtypebdeficientfibroblastsunderoxidativestress
AT gopalakrishnankalpana telomereattritionandgenomicinstabilityinxerodermapigmentosumtypebdeficientfibroblastsunderoxidativestress
AT handemprakash telomereattritionandgenomicinstabilityinxerodermapigmentosumtypebdeficientfibroblastsunderoxidativestress