Cargando…

A Comparison of Blue Light and Caffeine Effects on Cognitive Function and Alertness in Humans

The alerting effects of both caffeine and short wavelength (blue) light have been consistently reported. The ability of blue light to enhance alertness and cognitive function via non-image forming neuropathways have been suggested as a non-pharmacological countermeasure for drowsiness across a range...

Descripción completa

Detalles Bibliográficos
Autores principales: Beaven, C. Martyn, Ekström, Johan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838207/
https://www.ncbi.nlm.nih.gov/pubmed/24282477
http://dx.doi.org/10.1371/journal.pone.0076707
Descripción
Sumario:The alerting effects of both caffeine and short wavelength (blue) light have been consistently reported. The ability of blue light to enhance alertness and cognitive function via non-image forming neuropathways have been suggested as a non-pharmacological countermeasure for drowsiness across a range of occupational settings. Here we compare and contrast the alerting and psychomotor effects of 240 mg of caffeine and a 1-h dose of ~40 lx blue light in a non-athletic population. Twenty-one healthy subjects performed a computer-based psychomotor vigilance test before and after each of four randomly assigned trial conditions performed on different days: white light/placebo; white light/240 mg caffeine; blue light/placebo; blue light/240 mg caffeine. The Karolinska Sleepiness Scale was used to assess subjective measures of alertness. Both the caffeine only and blue light only conditions enhanced accuracy in a visual reaction test requiring a decision and an additive effect was observed with respect to the fastest reaction times. However, in a test of executive function, where a distraction was included, caffeine exerted a negative effect on accuracy. Furthermore, the blue light only condition consistently outperformed caffeine when both congruent and incongruent distractions were presented. The visual reactions in the absence of a decision or distraction were also enhanced in the blue light only condition and this effect was most prominent in the blue-eyed participants. Overall, blue light and caffeine demonstrated distinct effects on aspects of psychomotor function and have the potential to positively influence a range of settings where cognitive function and alertness are important. Specifically, despite the widespread use of caffeine in competitive sporting environments, the possible impact of blue light has received no research attention.