Cargando…
Detection of Patient Subgroups with Differential Expression in Omics Data: A Comprehensive Comparison of Univariate Measures
Detection of yet unknown subgroups showing differential gene or protein expression is a frequent goal in the analysis of modern molecular data. Applications range from cancer biology over developmental biology to toxicology. Often a control and an experimental group are compared, and subgroups can b...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838370/ https://www.ncbi.nlm.nih.gov/pubmed/24278130 http://dx.doi.org/10.1371/journal.pone.0079380 |
_version_ | 1782478347777867776 |
---|---|
author | Ahrens, Maike Turewicz, Michael Casjens, Swaantje May, Caroline Pesch, Beate Stephan, Christian Woitalla, Dirk Gold, Ralf Brüning, Thomas Meyer, Helmut E. Rahnenführer, Jörg Eisenacher, Martin |
author_facet | Ahrens, Maike Turewicz, Michael Casjens, Swaantje May, Caroline Pesch, Beate Stephan, Christian Woitalla, Dirk Gold, Ralf Brüning, Thomas Meyer, Helmut E. Rahnenführer, Jörg Eisenacher, Martin |
author_sort | Ahrens, Maike |
collection | PubMed |
description | Detection of yet unknown subgroups showing differential gene or protein expression is a frequent goal in the analysis of modern molecular data. Applications range from cancer biology over developmental biology to toxicology. Often a control and an experimental group are compared, and subgroups can be characterized by differential expression for only a subgroup-specific set of genes or proteins. Finding such genes and corresponding patient subgroups can help in understanding pathological pathways, diagnosis and defining drug targets. The size of the subgroup and the type of differential expression determine the optimal strategy for subgroup identification. To date, commonly used software packages hardly provide statistical tests and methods for the detection of such subgroups. Different univariate methods for subgroup detection are characterized and compared, both on simulated and on real data. We present an advanced design for simulation studies: Data is simulated under different distributional assumptions for the expression of the subgroup, and performance results are compared against theoretical upper bounds. For each distribution, different degrees of deviation from the majority of observations are considered for the subgroup. We evaluate classical approaches as well as various new suggestions in the context of omics data, including outlier sum, PADGE, and kurtosis. We also propose the new FisherSum score. ROC curve analysis and AUC values are used to quantify the ability of the methods to distinguish between genes or proteins with and without certain subgroup patterns. In general, FisherSum for small subgroups and [Image: see text]-test for large subgroups achieve best results. We apply each method to a case-control study on Parkinson's disease and underline the biological benefit of the new method. |
format | Online Article Text |
id | pubmed-3838370 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-38383702013-11-25 Detection of Patient Subgroups with Differential Expression in Omics Data: A Comprehensive Comparison of Univariate Measures Ahrens, Maike Turewicz, Michael Casjens, Swaantje May, Caroline Pesch, Beate Stephan, Christian Woitalla, Dirk Gold, Ralf Brüning, Thomas Meyer, Helmut E. Rahnenführer, Jörg Eisenacher, Martin PLoS One Research Article Detection of yet unknown subgroups showing differential gene or protein expression is a frequent goal in the analysis of modern molecular data. Applications range from cancer biology over developmental biology to toxicology. Often a control and an experimental group are compared, and subgroups can be characterized by differential expression for only a subgroup-specific set of genes or proteins. Finding such genes and corresponding patient subgroups can help in understanding pathological pathways, diagnosis and defining drug targets. The size of the subgroup and the type of differential expression determine the optimal strategy for subgroup identification. To date, commonly used software packages hardly provide statistical tests and methods for the detection of such subgroups. Different univariate methods for subgroup detection are characterized and compared, both on simulated and on real data. We present an advanced design for simulation studies: Data is simulated under different distributional assumptions for the expression of the subgroup, and performance results are compared against theoretical upper bounds. For each distribution, different degrees of deviation from the majority of observations are considered for the subgroup. We evaluate classical approaches as well as various new suggestions in the context of omics data, including outlier sum, PADGE, and kurtosis. We also propose the new FisherSum score. ROC curve analysis and AUC values are used to quantify the ability of the methods to distinguish between genes or proteins with and without certain subgroup patterns. In general, FisherSum for small subgroups and [Image: see text]-test for large subgroups achieve best results. We apply each method to a case-control study on Parkinson's disease and underline the biological benefit of the new method. Public Library of Science 2013-11-22 /pmc/articles/PMC3838370/ /pubmed/24278130 http://dx.doi.org/10.1371/journal.pone.0079380 Text en © 2013 Ahrens et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Ahrens, Maike Turewicz, Michael Casjens, Swaantje May, Caroline Pesch, Beate Stephan, Christian Woitalla, Dirk Gold, Ralf Brüning, Thomas Meyer, Helmut E. Rahnenführer, Jörg Eisenacher, Martin Detection of Patient Subgroups with Differential Expression in Omics Data: A Comprehensive Comparison of Univariate Measures |
title | Detection of Patient Subgroups with Differential Expression in Omics Data: A Comprehensive Comparison of Univariate Measures |
title_full | Detection of Patient Subgroups with Differential Expression in Omics Data: A Comprehensive Comparison of Univariate Measures |
title_fullStr | Detection of Patient Subgroups with Differential Expression in Omics Data: A Comprehensive Comparison of Univariate Measures |
title_full_unstemmed | Detection of Patient Subgroups with Differential Expression in Omics Data: A Comprehensive Comparison of Univariate Measures |
title_short | Detection of Patient Subgroups with Differential Expression in Omics Data: A Comprehensive Comparison of Univariate Measures |
title_sort | detection of patient subgroups with differential expression in omics data: a comprehensive comparison of univariate measures |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838370/ https://www.ncbi.nlm.nih.gov/pubmed/24278130 http://dx.doi.org/10.1371/journal.pone.0079380 |
work_keys_str_mv | AT ahrensmaike detectionofpatientsubgroupswithdifferentialexpressioninomicsdataacomprehensivecomparisonofunivariatemeasures AT turewiczmichael detectionofpatientsubgroupswithdifferentialexpressioninomicsdataacomprehensivecomparisonofunivariatemeasures AT casjensswaantje detectionofpatientsubgroupswithdifferentialexpressioninomicsdataacomprehensivecomparisonofunivariatemeasures AT maycaroline detectionofpatientsubgroupswithdifferentialexpressioninomicsdataacomprehensivecomparisonofunivariatemeasures AT peschbeate detectionofpatientsubgroupswithdifferentialexpressioninomicsdataacomprehensivecomparisonofunivariatemeasures AT stephanchristian detectionofpatientsubgroupswithdifferentialexpressioninomicsdataacomprehensivecomparisonofunivariatemeasures AT woitalladirk detectionofpatientsubgroupswithdifferentialexpressioninomicsdataacomprehensivecomparisonofunivariatemeasures AT goldralf detectionofpatientsubgroupswithdifferentialexpressioninomicsdataacomprehensivecomparisonofunivariatemeasures AT bruningthomas detectionofpatientsubgroupswithdifferentialexpressioninomicsdataacomprehensivecomparisonofunivariatemeasures AT meyerhelmute detectionofpatientsubgroupswithdifferentialexpressioninomicsdataacomprehensivecomparisonofunivariatemeasures AT rahnenfuhrerjorg detectionofpatientsubgroupswithdifferentialexpressioninomicsdataacomprehensivecomparisonofunivariatemeasures AT eisenachermartin detectionofpatientsubgroupswithdifferentialexpressioninomicsdataacomprehensivecomparisonofunivariatemeasures |