Cargando…
Hypoxia Limits Inhibitory Effects of Zn(2+) on Spreading Depolarizations
Spreading depolarizations (SDs) are coordinated depolarizations of brain tissue that have been well-characterized in animal models and more recently implicated in the progression of stroke injury. We previously showed that extracellular Zn(2+) accumulation can inhibit the propagation of SD events. I...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838375/ https://www.ncbi.nlm.nih.gov/pubmed/24278106 http://dx.doi.org/10.1371/journal.pone.0075739 |
Sumario: | Spreading depolarizations (SDs) are coordinated depolarizations of brain tissue that have been well-characterized in animal models and more recently implicated in the progression of stroke injury. We previously showed that extracellular Zn(2+) accumulation can inhibit the propagation of SD events. In that prior work, Zn(2+) was tested in normoxic conditions, where SD was generated by localized KCl pulses in oxygenated tissue. The current study examined the extent to which Zn(2+) effects are modified by hypoxia, to assess potential implications for stroke studies. The present studies examined SD generated in brain slices acutely prepared from mice, and recordings were made from the hippocampal CA1 region. SDs were generated by either local potassium injection (K-SD), exposure to the Na(+)/K(+)-ATPase inhibitor ouabain (ouabain-SD) or superfusion with modified ACSF with reduced oxygen and glucose concentrations (oxygen glucose deprivation: OGD-SD). Extracellular Zn(2+) exposures (100 µM ZnCl(2)) effectively decreased SD propagation rates and significantly increased the initiation threshold for K-SD generated in oxygenated ACSF (95% O(2)). In contrast, ZnCl(2) did not inhibit propagation of OGD-SD or ouabain-SD generated in hypoxic conditions. Zn(2+) sensitivity in 0% O(2) was restored by exposure to the protein oxidizer DTNB, suggesting that redox modulation may contribute to resistance to Zn(2+) in hypoxic conditions. DTNB pretreatment also significantly potentiated the inhibitory effects of competitive (D-AP5) or allosteric (Ro25-6981) NMDA receptor antagonists on OGD-SD. Finally, Zn(2+) inhibition of isolated NMDAR currents was potentiated by DTNB. Together, these results suggest that hypoxia-induced redox modulation can influence the sensitivity of SD to Zn(2+) as well as to other NMDAR antagonists. Such a mechanism may limit inhibitory effects of endogenous Zn(2+) accumulation in hypoxic regions close to ischemic infarcts. |
---|