Cargando…
Expression of skeletogenic genes during arm regeneration in the brittle star Amphiura filiformis()
The brittle star Amphiura filiformis, which regenerates its arms post autotomy, is emerging as a useful model for studying the molecular underpinnings of regeneration, aided by the recent availability of some molecular resources. During regeneration a blastema initially is formed distally to the amp...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838619/ https://www.ncbi.nlm.nih.gov/pubmed/24051028 http://dx.doi.org/10.1016/j.gep.2013.09.002 |
_version_ | 1782478369439350784 |
---|---|
author | Czarkwiani, Anna Dylus, David V. Oliveri, Paola |
author_facet | Czarkwiani, Anna Dylus, David V. Oliveri, Paola |
author_sort | Czarkwiani, Anna |
collection | PubMed |
description | The brittle star Amphiura filiformis, which regenerates its arms post autotomy, is emerging as a useful model for studying the molecular underpinnings of regeneration, aided by the recent availability of some molecular resources. During regeneration a blastema initially is formed distally to the amputation site, and then a rapid rebuild is obtained by adding metameric units, which will eventually differentiate and become fully functional. In this work we first characterize the developmental process of the regenerating arms using two differentiation markers for muscle and skeletal structures – Afi-trop-1 and Afi-αcoll. Both genes are not expressed in the blastema and newly added undifferentiated metameric units. Their expression at different regenerating stages shows an early segregation of muscle and skeletal cells during the regenerating process, long before the metameric units become functional. We then studied the expression of a set of genes orthologous of the sea urchin transcription factors involved in the development of skeletal and non-skeletal mesoderm: Afi-ets1/2, Afi-alx1, Afi-tbr, Afi-foxB and Afi-gataC. We found that Afi-ets1/2, Afi-alx1, Afi-foxB and Afi-gataC are all expressed at the blastemal stage. As regeneration progresses those genes are expressed in a similar small undifferentiated domain beneath the distal growth cap, while in more advanced metameric units they become restricted to different skeletal domains. Afi-foxB becomes expressed in non-skeletal structures. This suggests that they might play a combinatorial role only in the early cell specification process and that subsequently they function independently in the differentiation of different structures. Afi-tbr is not present in the adult arm tissue at any stage of regeneration. In situ hybridization results have been confirmed with a new strategy for quantitative PCR (QPCR), using a subdivision of the three stages of regeneration into proximal (differentiated) and distal (undifferentiated) arm segments. |
format | Online Article Text |
id | pubmed-3838619 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-38386192013-12-01 Expression of skeletogenic genes during arm regeneration in the brittle star Amphiura filiformis() Czarkwiani, Anna Dylus, David V. Oliveri, Paola Gene Expr Patterns Article The brittle star Amphiura filiformis, which regenerates its arms post autotomy, is emerging as a useful model for studying the molecular underpinnings of regeneration, aided by the recent availability of some molecular resources. During regeneration a blastema initially is formed distally to the amputation site, and then a rapid rebuild is obtained by adding metameric units, which will eventually differentiate and become fully functional. In this work we first characterize the developmental process of the regenerating arms using two differentiation markers for muscle and skeletal structures – Afi-trop-1 and Afi-αcoll. Both genes are not expressed in the blastema and newly added undifferentiated metameric units. Their expression at different regenerating stages shows an early segregation of muscle and skeletal cells during the regenerating process, long before the metameric units become functional. We then studied the expression of a set of genes orthologous of the sea urchin transcription factors involved in the development of skeletal and non-skeletal mesoderm: Afi-ets1/2, Afi-alx1, Afi-tbr, Afi-foxB and Afi-gataC. We found that Afi-ets1/2, Afi-alx1, Afi-foxB and Afi-gataC are all expressed at the blastemal stage. As regeneration progresses those genes are expressed in a similar small undifferentiated domain beneath the distal growth cap, while in more advanced metameric units they become restricted to different skeletal domains. Afi-foxB becomes expressed in non-skeletal structures. This suggests that they might play a combinatorial role only in the early cell specification process and that subsequently they function independently in the differentiation of different structures. Afi-tbr is not present in the adult arm tissue at any stage of regeneration. In situ hybridization results have been confirmed with a new strategy for quantitative PCR (QPCR), using a subdivision of the three stages of regeneration into proximal (differentiated) and distal (undifferentiated) arm segments. Elsevier 2013-12 /pmc/articles/PMC3838619/ /pubmed/24051028 http://dx.doi.org/10.1016/j.gep.2013.09.002 Text en © 2013 The Authors https://creativecommons.org/licenses/by-nc-nd/3.0/ Open Access under CC BY-NC-ND 3.0 (https://creativecommons.org/licenses/by-nc-nd/3.0/) license |
spellingShingle | Article Czarkwiani, Anna Dylus, David V. Oliveri, Paola Expression of skeletogenic genes during arm regeneration in the brittle star Amphiura filiformis() |
title | Expression of skeletogenic genes during arm regeneration in the brittle star Amphiura filiformis() |
title_full | Expression of skeletogenic genes during arm regeneration in the brittle star Amphiura filiformis() |
title_fullStr | Expression of skeletogenic genes during arm regeneration in the brittle star Amphiura filiformis() |
title_full_unstemmed | Expression of skeletogenic genes during arm regeneration in the brittle star Amphiura filiformis() |
title_short | Expression of skeletogenic genes during arm regeneration in the brittle star Amphiura filiformis() |
title_sort | expression of skeletogenic genes during arm regeneration in the brittle star amphiura filiformis() |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838619/ https://www.ncbi.nlm.nih.gov/pubmed/24051028 http://dx.doi.org/10.1016/j.gep.2013.09.002 |
work_keys_str_mv | AT czarkwianianna expressionofskeletogenicgenesduringarmregenerationinthebrittlestaramphiurafiliformis AT dylusdavidv expressionofskeletogenicgenesduringarmregenerationinthebrittlestaramphiurafiliformis AT oliveripaola expressionofskeletogenicgenesduringarmregenerationinthebrittlestaramphiurafiliformis |