Cargando…
Variable Selection in ROC Regression
Regression models are introduced into the receiver operating characteristic (ROC) analysis to accommodate effects of covariates, such as genes. If many covariates are available, the variable selection issue arises. The traditional induced methodology separately models outcomes of diseased and nondis...
Autor principal: | Wang, Binhuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838845/ https://www.ncbi.nlm.nih.gov/pubmed/24312135 http://dx.doi.org/10.1155/2013/436493 |
Ejemplares similares
-
ROC curve regression analysis: the use of ordinal regression models for diagnostic test assessment.
por: Tosteson, A N, et al.
Publicado: (1994) -
Heterodimer formed by ROC8 and ROC5 modulates leaf rolling in rice
por: Xu, Yang, et al.
Publicado: (2021) -
PrimerROC: accurate condition-independent dimer prediction using ROC analysis
por: Johnston, Andrew D., et al.
Publicado: (2019) -
pROC: an open-source package for R and S+ to analyze and compare ROC curves
por: Robin, Xavier, et al.
Publicado: (2011) -
Model-Based ROC Curve: Examining the Effect of Case Mix and Model Calibration on the ROC Plot
por: Sadatsafavi, Mohsen, et al.
Publicado: (2021)