Cargando…

A Machine-Learned Predictor of Colonic Polyps Based on Urinary Metabolomics

We report an automated diagnostic test that uses the NMR spectrum of a single spot urine sample to accurately distinguish patients who require a colonoscopy from those who do not. Moreover, our approach can be adjusted to tradeoff between sensitivity and specificity. We developed our system using a...

Descripción completa

Detalles Bibliográficos
Autores principales: Eisner, Roman, Greiner, Russell, Tso, Victor, Wang, Haili, Fedorak, Richard N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838851/
https://www.ncbi.nlm.nih.gov/pubmed/24307992
http://dx.doi.org/10.1155/2013/303982
Descripción
Sumario:We report an automated diagnostic test that uses the NMR spectrum of a single spot urine sample to accurately distinguish patients who require a colonoscopy from those who do not. Moreover, our approach can be adjusted to tradeoff between sensitivity and specificity. We developed our system using a group of 988 patients (633 normal and 355 who required colonoscopy) who were all at average or above-average risk for developing colorectal cancer. We obtained a metabolic profile of each subject, based on the urine samples collected from these subjects, analyzed via (1)H-NMR and quantified using targeted profiling. Each subject then underwent a colonoscopy, the gold standard to determine whether he/she actually had an adenomatous polyp, a precursor to colorectal cancer. The metabolic profiles, colonoscopy outcomes, and medical histories were then analysed using machine learning to create a classifier that could predict whether a future patient requires a colonoscopy. Our empirical studies show that this classifier has a sensitivity of 64% and a specificity of 65% and, unlike the current fecal tests, allows the administrators of the test to adjust the tradeoff between the two.