Cargando…
Multi-Fiber Tractography Visualizations for Diffusion MRI Data
In recent years, several new diffusion MRI approaches have been proposed to explore microstructural properties of the white matter, such as Q-ball imaging and spherical deconvolution-based techniques to estimate the orientation distribution function. These methods can describe the estimated diffusio...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3839966/ https://www.ncbi.nlm.nih.gov/pubmed/24282597 http://dx.doi.org/10.1371/journal.pone.0081453 |
_version_ | 1782478460121251840 |
---|---|
author | Vos, Sjoerd B. Viergever, Max A. Leemans, Alexander |
author_facet | Vos, Sjoerd B. Viergever, Max A. Leemans, Alexander |
author_sort | Vos, Sjoerd B. |
collection | PubMed |
description | In recent years, several new diffusion MRI approaches have been proposed to explore microstructural properties of the white matter, such as Q-ball imaging and spherical deconvolution-based techniques to estimate the orientation distribution function. These methods can describe the estimated diffusion profile with a higher accuracy than the more conventional second-rank diffusion tensor imaging technique. Despite many important advances, there are still inconsistent findings between different models that investigate the “crossing fibers” issue. Due to the high information content and the complex nature of the data, it becomes virtually impossible to interpret and compare results in a consistent manner. In this work, we present novel fiber tractography visualization approaches that provide a more complete picture of the microstructural architecture of fiber pathways: multi-fiber hyperstreamlines and streamribbons. By visualizing, for instance, the estimated fiber orientation distribution along the reconstructed tract in a continuous way, information of the local fiber architecture is combined with the global anatomical information derived from tractography. Facilitating the interpretation of diffusion MRI data, this approach can be useful for comparing different diffusion reconstruction techniques and may improve our understanding of the intricate white matter network. |
format | Online Article Text |
id | pubmed-3839966 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-38399662013-11-26 Multi-Fiber Tractography Visualizations for Diffusion MRI Data Vos, Sjoerd B. Viergever, Max A. Leemans, Alexander PLoS One Research Article In recent years, several new diffusion MRI approaches have been proposed to explore microstructural properties of the white matter, such as Q-ball imaging and spherical deconvolution-based techniques to estimate the orientation distribution function. These methods can describe the estimated diffusion profile with a higher accuracy than the more conventional second-rank diffusion tensor imaging technique. Despite many important advances, there are still inconsistent findings between different models that investigate the “crossing fibers” issue. Due to the high information content and the complex nature of the data, it becomes virtually impossible to interpret and compare results in a consistent manner. In this work, we present novel fiber tractography visualization approaches that provide a more complete picture of the microstructural architecture of fiber pathways: multi-fiber hyperstreamlines and streamribbons. By visualizing, for instance, the estimated fiber orientation distribution along the reconstructed tract in a continuous way, information of the local fiber architecture is combined with the global anatomical information derived from tractography. Facilitating the interpretation of diffusion MRI data, this approach can be useful for comparing different diffusion reconstruction techniques and may improve our understanding of the intricate white matter network. Public Library of Science 2013-11-25 /pmc/articles/PMC3839966/ /pubmed/24282597 http://dx.doi.org/10.1371/journal.pone.0081453 Text en © 2013 Vos et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Vos, Sjoerd B. Viergever, Max A. Leemans, Alexander Multi-Fiber Tractography Visualizations for Diffusion MRI Data |
title | Multi-Fiber Tractography Visualizations for Diffusion MRI Data |
title_full | Multi-Fiber Tractography Visualizations for Diffusion MRI Data |
title_fullStr | Multi-Fiber Tractography Visualizations for Diffusion MRI Data |
title_full_unstemmed | Multi-Fiber Tractography Visualizations for Diffusion MRI Data |
title_short | Multi-Fiber Tractography Visualizations for Diffusion MRI Data |
title_sort | multi-fiber tractography visualizations for diffusion mri data |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3839966/ https://www.ncbi.nlm.nih.gov/pubmed/24282597 http://dx.doi.org/10.1371/journal.pone.0081453 |
work_keys_str_mv | AT vossjoerdb multifibertractographyvisualizationsfordiffusionmridata AT viergevermaxa multifibertractographyvisualizationsfordiffusionmridata AT leemansalexander multifibertractographyvisualizationsfordiffusionmridata |