Cargando…
A Machine Learning Approach to Automated Structural Network Analysis: Application to Neonatal Encephalopathy
Neonatal encephalopathy represents a heterogeneous group of conditions associated with life-long developmental disabilities and neurological deficits. Clinical measures and current anatomic brain imaging remain inadequate predictors of outcome in children with neonatal encephalopathy. Some studies h...
Autores principales: | Ziv, Etay, Tymofiyeva, Olga, Ferriero, Donna M., Barkovich, A. James, Hess, Chris P., Xu, Duan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3840059/ https://www.ncbi.nlm.nih.gov/pubmed/24282501 http://dx.doi.org/10.1371/journal.pone.0078824 |
Ejemplares similares
-
Brain without Anatomy: Construction and Comparison of Fully Network-Driven Structural MRI Connectomes
por: Tymofiyeva, Olga, et al.
Publicado: (2014) -
A DTI-Based Template-Free Cortical Connectome Study of Brain Maturation
por: Tymofiyeva, Olga, et al.
Publicado: (2013) -
Towards the “Baby Connectome”: Mapping the Structural Connectivity of the Newborn Brain
por: Tymofiyeva, Olga, et al.
Publicado: (2012) -
Maternal or neonatal infection: association with neonatal encephalopathy outcomes
por: Jenster, Meike, et al.
Publicado: (2014) -
Long-term cognitive outcomes in term newborns with watershed injury caused by neonatal encephalopathy
por: Lee, Bo Lyun, et al.
Publicado: (2021)