Cargando…
Modifying cellular properties using artificial aptamer-lipid receptors
We demonstrate that artificial aptamer-lipid receptors (AR), which anchor on the surface of cells, can modify important cellular functions, including protein binding, enzymatic activity, and intercellular interactions. Streptavidin (SA)-AR-modified CEM cells captured the tetravalent SA with one biot...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3840377/ https://www.ncbi.nlm.nih.gov/pubmed/24275961 http://dx.doi.org/10.1038/srep03343 |
Sumario: | We demonstrate that artificial aptamer-lipid receptors (AR), which anchor on the surface of cells, can modify important cellular functions, including protein binding, enzymatic activity, and intercellular interactions. Streptavidin (SA)-AR-modified CEM cells captured the tetravalent SA with one biotin binding site. The remaining biotin sites captured biotinylated TDO5 aptamers, which target IgM on Ramos cells, to form CEM-Ramos cell assemblies. In another design, thrombin, an enzyme involved in blood clotting, was captured by thrombin-AR-modified cells and clot formation was visualized. Lastly, hematopoietic stem cell (HSC) mimics were modified with a tenascin-C-AR to improve the homing of HSC after an autologous bone marrow transplant. Tenascin-C-AR modified cells aggregated to cells in a tenascin-C expressing stem cell niche model better than library-AR modified cells. Modification of cellular properties using ARs is a one-step, dosable, nontoxic, and reversible method, which can be applied to any cell-type with any protein that has a known aptamer. |
---|