Cargando…
Schwann cell-free adult canine olfactory ensheathing cell preparations from olfactory bulb and mucosa display differential migratory and neurite growth-promoting properties in vitro
BACKGROUND: Transplantation of olfactory ensheathing cells (OEC) and Schwann cells (SC) is a promising therapeutic strategy to promote axonal growth and remyelination after spinal cord injury. Previous studies mainly focused on the rat model though results from primate and porcine models differed fr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3840578/ https://www.ncbi.nlm.nih.gov/pubmed/24219805 http://dx.doi.org/10.1186/1471-2202-14-141 |
_version_ | 1782478527283593216 |
---|---|
author | Roloff, Frank Ziege, Susanne Baumgärtner, Wolfgang Wewetzer, Konstantin Bicker, Gerd |
author_facet | Roloff, Frank Ziege, Susanne Baumgärtner, Wolfgang Wewetzer, Konstantin Bicker, Gerd |
author_sort | Roloff, Frank |
collection | PubMed |
description | BACKGROUND: Transplantation of olfactory ensheathing cells (OEC) and Schwann cells (SC) is a promising therapeutic strategy to promote axonal growth and remyelination after spinal cord injury. Previous studies mainly focused on the rat model though results from primate and porcine models differed from those in the rat model. Interestingly, canine OECs show primate-like in vitro characteristics, such as absence of early senescence and abundance of stable p75(NTR) expression indicating that this species represents a valuable translational species for further studies. So far, few investigations have tested different glial cell types within the same study under identical conditions. This makes it very difficult to evaluate contradictory or confirmatory findings reported in various studies. Moreover, potential contamination of OEC preparations with Schwann cells was difficult to exclude. Thus, it remains rather controversial whether the different glial types display distinct cellular properties. RESULTS: Here, we established cultures of Schwann cell-free OECs from olfactory bulb (OB-OECs) and mucosa (OM-OECs) and compared them in assays to Schwann cells. These glial cultures were obtained from a canine large animal model and used for monitoring migration, phagocytosis and the effects on in vitro neurite growth. OB-OECs and Schwann cells migrated faster than OM-OECs in a scratch wound assay. Glial cell migration was not modulated by cGMP and cAMP signaling, but activating protein kinase C enhanced motility. All three glial cell types displayed phagocytic activity in a microbead assay. In co-cultures with of human model (NT2) neurons neurite growth was maximal on OB-OECs. CONCLUSIONS: These data provide evidence that OB- and OM-OECs display distinct migratory behavior and interaction with neurites. OB-OECs migrate faster and enhance neurite growth of human model neurons better than Schwann cells, suggesting distinct and inherent properties of these closely-related cell types. Future studies will have to address whether, and how, these cellular properties correlate with the in vivo behavior after transplantation. |
format | Online Article Text |
id | pubmed-3840578 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-38405782013-11-27 Schwann cell-free adult canine olfactory ensheathing cell preparations from olfactory bulb and mucosa display differential migratory and neurite growth-promoting properties in vitro Roloff, Frank Ziege, Susanne Baumgärtner, Wolfgang Wewetzer, Konstantin Bicker, Gerd BMC Neurosci Research Article BACKGROUND: Transplantation of olfactory ensheathing cells (OEC) and Schwann cells (SC) is a promising therapeutic strategy to promote axonal growth and remyelination after spinal cord injury. Previous studies mainly focused on the rat model though results from primate and porcine models differed from those in the rat model. Interestingly, canine OECs show primate-like in vitro characteristics, such as absence of early senescence and abundance of stable p75(NTR) expression indicating that this species represents a valuable translational species for further studies. So far, few investigations have tested different glial cell types within the same study under identical conditions. This makes it very difficult to evaluate contradictory or confirmatory findings reported in various studies. Moreover, potential contamination of OEC preparations with Schwann cells was difficult to exclude. Thus, it remains rather controversial whether the different glial types display distinct cellular properties. RESULTS: Here, we established cultures of Schwann cell-free OECs from olfactory bulb (OB-OECs) and mucosa (OM-OECs) and compared them in assays to Schwann cells. These glial cultures were obtained from a canine large animal model and used for monitoring migration, phagocytosis and the effects on in vitro neurite growth. OB-OECs and Schwann cells migrated faster than OM-OECs in a scratch wound assay. Glial cell migration was not modulated by cGMP and cAMP signaling, but activating protein kinase C enhanced motility. All three glial cell types displayed phagocytic activity in a microbead assay. In co-cultures with of human model (NT2) neurons neurite growth was maximal on OB-OECs. CONCLUSIONS: These data provide evidence that OB- and OM-OECs display distinct migratory behavior and interaction with neurites. OB-OECs migrate faster and enhance neurite growth of human model neurons better than Schwann cells, suggesting distinct and inherent properties of these closely-related cell types. Future studies will have to address whether, and how, these cellular properties correlate with the in vivo behavior after transplantation. BioMed Central 2013-11-13 /pmc/articles/PMC3840578/ /pubmed/24219805 http://dx.doi.org/10.1186/1471-2202-14-141 Text en Copyright © 2013 Roloff et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Roloff, Frank Ziege, Susanne Baumgärtner, Wolfgang Wewetzer, Konstantin Bicker, Gerd Schwann cell-free adult canine olfactory ensheathing cell preparations from olfactory bulb and mucosa display differential migratory and neurite growth-promoting properties in vitro |
title | Schwann cell-free adult canine olfactory ensheathing cell preparations from olfactory bulb and mucosa display differential migratory and neurite growth-promoting properties in vitro |
title_full | Schwann cell-free adult canine olfactory ensheathing cell preparations from olfactory bulb and mucosa display differential migratory and neurite growth-promoting properties in vitro |
title_fullStr | Schwann cell-free adult canine olfactory ensheathing cell preparations from olfactory bulb and mucosa display differential migratory and neurite growth-promoting properties in vitro |
title_full_unstemmed | Schwann cell-free adult canine olfactory ensheathing cell preparations from olfactory bulb and mucosa display differential migratory and neurite growth-promoting properties in vitro |
title_short | Schwann cell-free adult canine olfactory ensheathing cell preparations from olfactory bulb and mucosa display differential migratory and neurite growth-promoting properties in vitro |
title_sort | schwann cell-free adult canine olfactory ensheathing cell preparations from olfactory bulb and mucosa display differential migratory and neurite growth-promoting properties in vitro |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3840578/ https://www.ncbi.nlm.nih.gov/pubmed/24219805 http://dx.doi.org/10.1186/1471-2202-14-141 |
work_keys_str_mv | AT rolofffrank schwanncellfreeadultcanineolfactoryensheathingcellpreparationsfromolfactorybulbandmucosadisplaydifferentialmigratoryandneuritegrowthpromotingpropertiesinvitro AT ziegesusanne schwanncellfreeadultcanineolfactoryensheathingcellpreparationsfromolfactorybulbandmucosadisplaydifferentialmigratoryandneuritegrowthpromotingpropertiesinvitro AT baumgartnerwolfgang schwanncellfreeadultcanineolfactoryensheathingcellpreparationsfromolfactorybulbandmucosadisplaydifferentialmigratoryandneuritegrowthpromotingpropertiesinvitro AT wewetzerkonstantin schwanncellfreeadultcanineolfactoryensheathingcellpreparationsfromolfactorybulbandmucosadisplaydifferentialmigratoryandneuritegrowthpromotingpropertiesinvitro AT bickergerd schwanncellfreeadultcanineolfactoryensheathingcellpreparationsfromolfactorybulbandmucosadisplaydifferentialmigratoryandneuritegrowthpromotingpropertiesinvitro |