Cargando…
Analysis of fluorescent reporters indicates heterogeneity in glucose uptake and utilization in clonal bacterial populations
BACKGROUND: In this study, we aimed at investigating heterogeneity in the expression of metabolic genes in clonal populations of Escherichia coli growing on glucose as the sole carbon source. Different metabolic phenotypes can arise in these clonal populations through variation in the expression of...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3840653/ https://www.ncbi.nlm.nih.gov/pubmed/24238347 http://dx.doi.org/10.1186/1471-2180-13-258 |
_version_ | 1782478543926591488 |
---|---|
author | Nikolic, Nela Barner, Thomas Ackermann, Martin |
author_facet | Nikolic, Nela Barner, Thomas Ackermann, Martin |
author_sort | Nikolic, Nela |
collection | PubMed |
description | BACKGROUND: In this study, we aimed at investigating heterogeneity in the expression of metabolic genes in clonal populations of Escherichia coli growing on glucose as the sole carbon source. Different metabolic phenotypes can arise in these clonal populations through variation in the expression of glucose transporters and metabolic enzymes. First, we focused on the glucose transporters PtsG and MglBAC to analyze the diversity of glucose uptake strategies. Second, we analyzed phenotypic variation in the expression of genes involved in gluconeogenesis and acetate scavenging (as acetate is formed and excreted during bacterial growth on glucose), which can reveal, for instance, phenotypic subpopulations that cross-feed through the exchange of acetate. In these experiments, E. coli MG1655 strains containing different transcriptional GFP reporters were grown in chemostats and reporter expression was measured with flow cytometry. RESULTS: Our results suggest heterogeneous expression of metabolic genes in bacterial clonal populations grown in glucose environments. The two glucose transport systems exhibited different level of heterogeneity. The majority of the bacterial cells expressed the reporters for both glucose transporters MglBAC and PtsG and a small fraction of cells only expressed the reporter for Mgl. At a low dilution rate, signals from transcriptional reporters for acetyl-CoA synthetase Acs and phosphoenolpyruvate carboxykinase Pck indicated that almost all cells expressed the genes that are part of acetate utilization and the gluconeogenesis pathway, respectively. Possible co-existence of two phenotypic subpopulations differing in acs expression occurred at the threshold of the switch to overflow metabolism. The overflow metabolism results in the production of acetate and has been previously reported to occur at intermediate dilution rates in chemostats with high concentration of glucose in the feed. CONCLUSIONS: Analysis of the heterogeneous expression of reporters for genes involved in glucose and acetate metabolism raises new question whether different metabolic phenotypes are expressed in clonal populations growing in continuous cultures fed on glucose as the initially sole carbon source. |
format | Online Article Text |
id | pubmed-3840653 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-38406532013-11-27 Analysis of fluorescent reporters indicates heterogeneity in glucose uptake and utilization in clonal bacterial populations Nikolic, Nela Barner, Thomas Ackermann, Martin BMC Microbiol Research Article BACKGROUND: In this study, we aimed at investigating heterogeneity in the expression of metabolic genes in clonal populations of Escherichia coli growing on glucose as the sole carbon source. Different metabolic phenotypes can arise in these clonal populations through variation in the expression of glucose transporters and metabolic enzymes. First, we focused on the glucose transporters PtsG and MglBAC to analyze the diversity of glucose uptake strategies. Second, we analyzed phenotypic variation in the expression of genes involved in gluconeogenesis and acetate scavenging (as acetate is formed and excreted during bacterial growth on glucose), which can reveal, for instance, phenotypic subpopulations that cross-feed through the exchange of acetate. In these experiments, E. coli MG1655 strains containing different transcriptional GFP reporters were grown in chemostats and reporter expression was measured with flow cytometry. RESULTS: Our results suggest heterogeneous expression of metabolic genes in bacterial clonal populations grown in glucose environments. The two glucose transport systems exhibited different level of heterogeneity. The majority of the bacterial cells expressed the reporters for both glucose transporters MglBAC and PtsG and a small fraction of cells only expressed the reporter for Mgl. At a low dilution rate, signals from transcriptional reporters for acetyl-CoA synthetase Acs and phosphoenolpyruvate carboxykinase Pck indicated that almost all cells expressed the genes that are part of acetate utilization and the gluconeogenesis pathway, respectively. Possible co-existence of two phenotypic subpopulations differing in acs expression occurred at the threshold of the switch to overflow metabolism. The overflow metabolism results in the production of acetate and has been previously reported to occur at intermediate dilution rates in chemostats with high concentration of glucose in the feed. CONCLUSIONS: Analysis of the heterogeneous expression of reporters for genes involved in glucose and acetate metabolism raises new question whether different metabolic phenotypes are expressed in clonal populations growing in continuous cultures fed on glucose as the initially sole carbon source. BioMed Central 2013-11-15 /pmc/articles/PMC3840653/ /pubmed/24238347 http://dx.doi.org/10.1186/1471-2180-13-258 Text en Copyright © 2013 Nikolic et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Nikolic, Nela Barner, Thomas Ackermann, Martin Analysis of fluorescent reporters indicates heterogeneity in glucose uptake and utilization in clonal bacterial populations |
title | Analysis of fluorescent reporters indicates heterogeneity in glucose uptake and utilization in clonal bacterial populations |
title_full | Analysis of fluorescent reporters indicates heterogeneity in glucose uptake and utilization in clonal bacterial populations |
title_fullStr | Analysis of fluorescent reporters indicates heterogeneity in glucose uptake and utilization in clonal bacterial populations |
title_full_unstemmed | Analysis of fluorescent reporters indicates heterogeneity in glucose uptake and utilization in clonal bacterial populations |
title_short | Analysis of fluorescent reporters indicates heterogeneity in glucose uptake and utilization in clonal bacterial populations |
title_sort | analysis of fluorescent reporters indicates heterogeneity in glucose uptake and utilization in clonal bacterial populations |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3840653/ https://www.ncbi.nlm.nih.gov/pubmed/24238347 http://dx.doi.org/10.1186/1471-2180-13-258 |
work_keys_str_mv | AT nikolicnela analysisoffluorescentreportersindicatesheterogeneityinglucoseuptakeandutilizationinclonalbacterialpopulations AT barnerthomas analysisoffluorescentreportersindicatesheterogeneityinglucoseuptakeandutilizationinclonalbacterialpopulations AT ackermannmartin analysisoffluorescentreportersindicatesheterogeneityinglucoseuptakeandutilizationinclonalbacterialpopulations |