Cargando…
Fouling of an anion exchange chromatography operation in a monoclonal antibody process: Visualization and kinetic studies
Fouling of chromatographic resins over their operational lifetimes can be a significant problem for commercial bioseparations. In this article, scanning electron microscopy (SEM), batch uptake experiments, confocal laser scanning microscopy (CLSM) and small-scale column studies were applied to chara...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3840701/ https://www.ncbi.nlm.nih.gov/pubmed/23483524 http://dx.doi.org/10.1002/bit.24898 |
_version_ | 1782478554688126976 |
---|---|
author | Close, Edward J Salm, Jeffrey R Iskra, Timothy Sørensen, Eva Bracewell, Daniel G |
author_facet | Close, Edward J Salm, Jeffrey R Iskra, Timothy Sørensen, Eva Bracewell, Daniel G |
author_sort | Close, Edward J |
collection | PubMed |
description | Fouling of chromatographic resins over their operational lifetimes can be a significant problem for commercial bioseparations. In this article, scanning electron microscopy (SEM), batch uptake experiments, confocal laser scanning microscopy (CLSM) and small-scale column studies were applied to characterize a case study where fouling had been observed during process development. The fouling was found to occur on an anion exchange (AEX) polishing step following a protein A affinity capture step in a process for the purification of a monoclonal antibody. Fouled resin samples analyzed by SEM and batch uptake experiments indicated that after successive batch cycles, significant blockage of the pores at the resin surface occurred, thereby decreasing the protein uptake rate. Further studies were performed using CLSM to allow temporal and spatial measurements of protein adsorption within the resin, for clean, partially fouled and extensively fouled resin samples. These samples were packed within a miniaturized flowcell and challenged with fluorescently labeled albumin that enabled in situ measurements. The results indicated that the foulant has a significant impact on the kinetics of adsorption, severely decreasing the protein uptake rate, but only results in a minimal decrease in saturation capacity. The impact of the foulant on the kinetics of adsorption was further investigated by loading BSA onto fouled resin over an extended range of flow rates. By decreasing the flow rate during BSA loading, the capacity of the resin was recovered. These data support the hypothesis that the foulant is located on the particle surface, only penetrating the particle to a limited degree. The increased understanding into the nature of the fouling can help in the continued process development of this industrial example. Scanning electron microscopy (SEM), batch uptake experiments, confocal laser scanning microscopy (CLSM) and small-scale column experiments were applied to characterize a case study where fouling had been observed on an anion exchange chromatography in a monoclonal antibody process. The results suggest the foulant is located on the particle surface, resulting in a minimal decrease in saturation capacity, but having a significant impact on the kinetics of adsorption, severely decreasing protein uptake rate. |
format | Online Article Text |
id | pubmed-3840701 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Blackwell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-38407012013-12-02 Fouling of an anion exchange chromatography operation in a monoclonal antibody process: Visualization and kinetic studies Close, Edward J Salm, Jeffrey R Iskra, Timothy Sørensen, Eva Bracewell, Daniel G Biotechnol Bioeng Articles Fouling of chromatographic resins over their operational lifetimes can be a significant problem for commercial bioseparations. In this article, scanning electron microscopy (SEM), batch uptake experiments, confocal laser scanning microscopy (CLSM) and small-scale column studies were applied to characterize a case study where fouling had been observed during process development. The fouling was found to occur on an anion exchange (AEX) polishing step following a protein A affinity capture step in a process for the purification of a monoclonal antibody. Fouled resin samples analyzed by SEM and batch uptake experiments indicated that after successive batch cycles, significant blockage of the pores at the resin surface occurred, thereby decreasing the protein uptake rate. Further studies were performed using CLSM to allow temporal and spatial measurements of protein adsorption within the resin, for clean, partially fouled and extensively fouled resin samples. These samples were packed within a miniaturized flowcell and challenged with fluorescently labeled albumin that enabled in situ measurements. The results indicated that the foulant has a significant impact on the kinetics of adsorption, severely decreasing the protein uptake rate, but only results in a minimal decrease in saturation capacity. The impact of the foulant on the kinetics of adsorption was further investigated by loading BSA onto fouled resin over an extended range of flow rates. By decreasing the flow rate during BSA loading, the capacity of the resin was recovered. These data support the hypothesis that the foulant is located on the particle surface, only penetrating the particle to a limited degree. The increased understanding into the nature of the fouling can help in the continued process development of this industrial example. Scanning electron microscopy (SEM), batch uptake experiments, confocal laser scanning microscopy (CLSM) and small-scale column experiments were applied to characterize a case study where fouling had been observed on an anion exchange chromatography in a monoclonal antibody process. The results suggest the foulant is located on the particle surface, resulting in a minimal decrease in saturation capacity, but having a significant impact on the kinetics of adsorption, severely decreasing protein uptake rate. Blackwell Publishing Ltd 2013-09 2013-03-31 /pmc/articles/PMC3840701/ /pubmed/23483524 http://dx.doi.org/10.1002/bit.24898 Text en Copyright © 2013 Wiley Periodicals, Inc. http://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
spellingShingle | Articles Close, Edward J Salm, Jeffrey R Iskra, Timothy Sørensen, Eva Bracewell, Daniel G Fouling of an anion exchange chromatography operation in a monoclonal antibody process: Visualization and kinetic studies |
title | Fouling of an anion exchange chromatography operation in a monoclonal antibody process: Visualization and kinetic studies |
title_full | Fouling of an anion exchange chromatography operation in a monoclonal antibody process: Visualization and kinetic studies |
title_fullStr | Fouling of an anion exchange chromatography operation in a monoclonal antibody process: Visualization and kinetic studies |
title_full_unstemmed | Fouling of an anion exchange chromatography operation in a monoclonal antibody process: Visualization and kinetic studies |
title_short | Fouling of an anion exchange chromatography operation in a monoclonal antibody process: Visualization and kinetic studies |
title_sort | fouling of an anion exchange chromatography operation in a monoclonal antibody process: visualization and kinetic studies |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3840701/ https://www.ncbi.nlm.nih.gov/pubmed/23483524 http://dx.doi.org/10.1002/bit.24898 |
work_keys_str_mv | AT closeedwardj foulingofananionexchangechromatographyoperationinamonoclonalantibodyprocessvisualizationandkineticstudies AT salmjeffreyr foulingofananionexchangechromatographyoperationinamonoclonalantibodyprocessvisualizationandkineticstudies AT iskratimothy foulingofananionexchangechromatographyoperationinamonoclonalantibodyprocessvisualizationandkineticstudies AT sørenseneva foulingofananionexchangechromatographyoperationinamonoclonalantibodyprocessvisualizationandkineticstudies AT bracewelldanielg foulingofananionexchangechromatographyoperationinamonoclonalantibodyprocessvisualizationandkineticstudies |