Cargando…
The Cytohesin Coiled-Coil Domain Interacts with Threonine 276 to Control Membrane Association
Cell migration is regulated by a number of small GTPases, including members of the Arf family. Cytohesins, a family of Arf-activating proteins, have been extensively implicated in the regulation of Arfs during migration and cell shape change. Membrane association of both the Arf and its activating p...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3841123/ https://www.ncbi.nlm.nih.gov/pubmed/24303080 http://dx.doi.org/10.1371/journal.pone.0082084 |
Sumario: | Cell migration is regulated by a number of small GTPases, including members of the Arf family. Cytohesins, a family of Arf-activating proteins, have been extensively implicated in the regulation of Arfs during migration and cell shape change. Membrane association of both the Arf and its activating protein is a prerequisite for Arf activation. Therefore regulating the extent of cytohesin membrane association is a mechanism for controlling the initiation of cell movement. We have discovered a novel intramolecular interaction that controls the association of cytohesins with membranes. The presence of the coiled-coil domain reduces the association of cytohesin 2 with membranes. We demonstrate that this domain interacts with more C-terminal regions of the protein. This interaction is independent of another previously identified autoinhibitory conformation. A threonine residue (T276) in the cytohesin 2 PH domain is a target for phosphorylation by Akt. Mutation of this threonine to aspartic acid, to mimic phosphorylation, disrupts the binding of the coiled-coil domain to c-terminal regions and promotes membrane association of cytohesin 2. The presence of a second autoinhibitory interaction in the cytohesins suggests that these proteins can act a signal integrators that stimulate migration only after receive multiple pro-migratory signals. |
---|