Cargando…
Prioritization of Cancer Marker Candidates Based on the Immunohistochemistry Staining Images Deposited in the Human Protein Atlas
Cancer marker discovery is an emerging topic in high-throughput quantitative proteomics. However, the omics technology usually generates a long list of marker candidates that requires a labor-intensive filtering process in order to screen for potentially useful markers. Specifically, various paramet...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3841220/ https://www.ncbi.nlm.nih.gov/pubmed/24303032 http://dx.doi.org/10.1371/journal.pone.0081079 |
_version_ | 1782292754455330816 |
---|---|
author | Chiang, Su-Chien Han, Chia-Li Yu, Kun-Hsing Chen, Yu-Ju Wu, Kun-Pin |
author_facet | Chiang, Su-Chien Han, Chia-Li Yu, Kun-Hsing Chen, Yu-Ju Wu, Kun-Pin |
author_sort | Chiang, Su-Chien |
collection | PubMed |
description | Cancer marker discovery is an emerging topic in high-throughput quantitative proteomics. However, the omics technology usually generates a long list of marker candidates that requires a labor-intensive filtering process in order to screen for potentially useful markers. Specifically, various parameters, such as the level of overexpression of the marker in the cancer type of interest, which is related to sensitivity, and the specificity of the marker among cancer groups, are the most critical considerations. Protein expression profiling on the basis of immunohistochemistry (IHC) staining images is a technique commonly used during such filtering procedures. To systematically investigate the protein expression in different cancer versus normal tissues and cell types, the Human Protein Atlas is a most comprehensive resource because it includes millions of high-resolution IHC images with expert-curated annotations. To facilitate the filtering of potential biomarker candidates from large-scale omics datasets, in this study we have proposed a scoring approach for quantifying IHC annotation of paired cancerous/normal tissues and cancerous/normal cell types. We have comprehensively calculated the scores of all the 17219 tested antibodies deposited in the Human Protein Atlas based on their accumulated IHC images and obtained 457110 scores covering 20 different types of cancers. Statistical tests demonstrate the ability of the proposed scoring approach to prioritize cancer-specific proteins. Top 100 potential marker candidates were prioritized for the 20 cancer types with statistical significance. In addition, a model study was carried out of 1482 membrane proteins identified from a quantitative comparison of paired cancerous and adjacent normal tissues from patients with colorectal cancer (CRC). The proposed scoring approach demonstrated successful prioritization and identified four CRC markers, including two of the most widely used, namely CEACAM5 and CEACAM6. These results demonstrate the potential of this scoring approach in terms of cancer marker discovery and development. All the calculated scores are available at http://bal.ym.edu.tw/hpa/. |
format | Online Article Text |
id | pubmed-3841220 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-38412202013-12-03 Prioritization of Cancer Marker Candidates Based on the Immunohistochemistry Staining Images Deposited in the Human Protein Atlas Chiang, Su-Chien Han, Chia-Li Yu, Kun-Hsing Chen, Yu-Ju Wu, Kun-Pin PLoS One Research Article Cancer marker discovery is an emerging topic in high-throughput quantitative proteomics. However, the omics technology usually generates a long list of marker candidates that requires a labor-intensive filtering process in order to screen for potentially useful markers. Specifically, various parameters, such as the level of overexpression of the marker in the cancer type of interest, which is related to sensitivity, and the specificity of the marker among cancer groups, are the most critical considerations. Protein expression profiling on the basis of immunohistochemistry (IHC) staining images is a technique commonly used during such filtering procedures. To systematically investigate the protein expression in different cancer versus normal tissues and cell types, the Human Protein Atlas is a most comprehensive resource because it includes millions of high-resolution IHC images with expert-curated annotations. To facilitate the filtering of potential biomarker candidates from large-scale omics datasets, in this study we have proposed a scoring approach for quantifying IHC annotation of paired cancerous/normal tissues and cancerous/normal cell types. We have comprehensively calculated the scores of all the 17219 tested antibodies deposited in the Human Protein Atlas based on their accumulated IHC images and obtained 457110 scores covering 20 different types of cancers. Statistical tests demonstrate the ability of the proposed scoring approach to prioritize cancer-specific proteins. Top 100 potential marker candidates were prioritized for the 20 cancer types with statistical significance. In addition, a model study was carried out of 1482 membrane proteins identified from a quantitative comparison of paired cancerous and adjacent normal tissues from patients with colorectal cancer (CRC). The proposed scoring approach demonstrated successful prioritization and identified four CRC markers, including two of the most widely used, namely CEACAM5 and CEACAM6. These results demonstrate the potential of this scoring approach in terms of cancer marker discovery and development. All the calculated scores are available at http://bal.ym.edu.tw/hpa/. Public Library of Science 2013-11-26 /pmc/articles/PMC3841220/ /pubmed/24303032 http://dx.doi.org/10.1371/journal.pone.0081079 Text en © 2013 Chiang et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Chiang, Su-Chien Han, Chia-Li Yu, Kun-Hsing Chen, Yu-Ju Wu, Kun-Pin Prioritization of Cancer Marker Candidates Based on the Immunohistochemistry Staining Images Deposited in the Human Protein Atlas |
title | Prioritization of Cancer Marker Candidates Based on the Immunohistochemistry Staining Images Deposited in the Human Protein Atlas |
title_full | Prioritization of Cancer Marker Candidates Based on the Immunohistochemistry Staining Images Deposited in the Human Protein Atlas |
title_fullStr | Prioritization of Cancer Marker Candidates Based on the Immunohistochemistry Staining Images Deposited in the Human Protein Atlas |
title_full_unstemmed | Prioritization of Cancer Marker Candidates Based on the Immunohistochemistry Staining Images Deposited in the Human Protein Atlas |
title_short | Prioritization of Cancer Marker Candidates Based on the Immunohistochemistry Staining Images Deposited in the Human Protein Atlas |
title_sort | prioritization of cancer marker candidates based on the immunohistochemistry staining images deposited in the human protein atlas |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3841220/ https://www.ncbi.nlm.nih.gov/pubmed/24303032 http://dx.doi.org/10.1371/journal.pone.0081079 |
work_keys_str_mv | AT chiangsuchien prioritizationofcancermarkercandidatesbasedontheimmunohistochemistrystainingimagesdepositedinthehumanproteinatlas AT hanchiali prioritizationofcancermarkercandidatesbasedontheimmunohistochemistrystainingimagesdepositedinthehumanproteinatlas AT yukunhsing prioritizationofcancermarkercandidatesbasedontheimmunohistochemistrystainingimagesdepositedinthehumanproteinatlas AT chenyuju prioritizationofcancermarkercandidatesbasedontheimmunohistochemistrystainingimagesdepositedinthehumanproteinatlas AT wukunpin prioritizationofcancermarkercandidatesbasedontheimmunohistochemistrystainingimagesdepositedinthehumanproteinatlas |