Cargando…
Correlation and Interaction Visualization of Altmetric Indicators Extracted From Scholarly Social Network Activities: Dimensions and Structure
BACKGROUND: Citation counts for peer-reviewed articles and the impact factor of journals have long been indicators of article importance or quality. In the Web 2.0 era, growing numbers of scholars are using scholarly social network tools to communicate scientific ideas with colleagues, thereby makin...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications Inc.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3841360/ https://www.ncbi.nlm.nih.gov/pubmed/24275693 http://dx.doi.org/10.2196/jmir.2707 |
_version_ | 1782292774200016896 |
---|---|
author | Liu, Chun Li Xu, Yue Quan Wu, Hui Chen, Si Si Guo, Ji Jun |
author_facet | Liu, Chun Li Xu, Yue Quan Wu, Hui Chen, Si Si Guo, Ji Jun |
author_sort | Liu, Chun Li |
collection | PubMed |
description | BACKGROUND: Citation counts for peer-reviewed articles and the impact factor of journals have long been indicators of article importance or quality. In the Web 2.0 era, growing numbers of scholars are using scholarly social network tools to communicate scientific ideas with colleagues, thereby making traditional indicators less sufficient, immediate, and comprehensive. In these new situations, the altmetric indicators offer alternative measures that reflect the multidimensional nature of scholarly impact in an immediate, open, and individualized way. In this direction of research, some studies have demonstrated the correlation between altmetrics and traditional metrics with different samples. However, up to now, there has been relatively little research done on the dimension and interaction structure of altmetrics. OBJECTIVE: Our goal was to reveal the number of dimensions that altmetric indicators should be divided into and the structure in which altmetric indicators interact with each other. METHODS: Because an article-level metrics dataset is collected from scholarly social media and open access platforms, it is one of the most robust samples available to study altmetric indicators. Therefore, we downloaded a large dataset containing activity data in 20 types of metrics present in 33,128 academic articles from the application programming interface website. First, we analyzed the correlation among altmetric indicators using Spearman rank correlation. Second, we visualized the multiple correlation coefficient matrixes with graduated colors. Third, inputting the correlation matrix, we drew an MDS diagram to demonstrate the dimension for altmetric indicators. For correlation structure, we used a social network map to represent the social relationships and the strength of relations. RESULTS: We found that the distribution of altmetric indicators is significantly non-normal and positively skewed. The distribution of downloads and page views follows the Pareto law. Moreover, we found that the Spearman coefficients from 91.58% of the pairs of variables indicate statistical significance at the .01 level. The non-metric MDS map divided the 20 altmetric indicators into three clusters: traditional metrics, active altmetrics, and inactive altmetrics. The social network diagram showed two subgroups that are tied to each other but not to other groups, thus indicating an intersection between altmetrics and traditional metric indicators. CONCLUSIONS: Altmetrics complement, and most correlate significantly with, traditional measures. Therefore, in future evaluations of the social impact of articles, we should consider not only traditional metrics but also active altmetrics. There may also be a transfer phenomenon for the social impact of academic articles. The impact transfer path has transfer, or intermediate, stations that transport and accelerate article social impact from active altmetrics to traditional metrics and vice versa. This discovery will be helpful to explain the impact transfer mechanism of articles in the Web 2.0 era. Hence, altmetrics are in fact superior to traditional filters for assessing scholarly impact in multiple dimensions and in terms of social structure. |
format | Online Article Text |
id | pubmed-3841360 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | JMIR Publications Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-38413602013-11-27 Correlation and Interaction Visualization of Altmetric Indicators Extracted From Scholarly Social Network Activities: Dimensions and Structure Liu, Chun Li Xu, Yue Quan Wu, Hui Chen, Si Si Guo, Ji Jun J Med Internet Res Original Paper BACKGROUND: Citation counts for peer-reviewed articles and the impact factor of journals have long been indicators of article importance or quality. In the Web 2.0 era, growing numbers of scholars are using scholarly social network tools to communicate scientific ideas with colleagues, thereby making traditional indicators less sufficient, immediate, and comprehensive. In these new situations, the altmetric indicators offer alternative measures that reflect the multidimensional nature of scholarly impact in an immediate, open, and individualized way. In this direction of research, some studies have demonstrated the correlation between altmetrics and traditional metrics with different samples. However, up to now, there has been relatively little research done on the dimension and interaction structure of altmetrics. OBJECTIVE: Our goal was to reveal the number of dimensions that altmetric indicators should be divided into and the structure in which altmetric indicators interact with each other. METHODS: Because an article-level metrics dataset is collected from scholarly social media and open access platforms, it is one of the most robust samples available to study altmetric indicators. Therefore, we downloaded a large dataset containing activity data in 20 types of metrics present in 33,128 academic articles from the application programming interface website. First, we analyzed the correlation among altmetric indicators using Spearman rank correlation. Second, we visualized the multiple correlation coefficient matrixes with graduated colors. Third, inputting the correlation matrix, we drew an MDS diagram to demonstrate the dimension for altmetric indicators. For correlation structure, we used a social network map to represent the social relationships and the strength of relations. RESULTS: We found that the distribution of altmetric indicators is significantly non-normal and positively skewed. The distribution of downloads and page views follows the Pareto law. Moreover, we found that the Spearman coefficients from 91.58% of the pairs of variables indicate statistical significance at the .01 level. The non-metric MDS map divided the 20 altmetric indicators into three clusters: traditional metrics, active altmetrics, and inactive altmetrics. The social network diagram showed two subgroups that are tied to each other but not to other groups, thus indicating an intersection between altmetrics and traditional metric indicators. CONCLUSIONS: Altmetrics complement, and most correlate significantly with, traditional measures. Therefore, in future evaluations of the social impact of articles, we should consider not only traditional metrics but also active altmetrics. There may also be a transfer phenomenon for the social impact of academic articles. The impact transfer path has transfer, or intermediate, stations that transport and accelerate article social impact from active altmetrics to traditional metrics and vice versa. This discovery will be helpful to explain the impact transfer mechanism of articles in the Web 2.0 era. Hence, altmetrics are in fact superior to traditional filters for assessing scholarly impact in multiple dimensions and in terms of social structure. JMIR Publications Inc. 2013-11-25 /pmc/articles/PMC3841360/ /pubmed/24275693 http://dx.doi.org/10.2196/jmir.2707 Text en ©Chun Li Liu, Yue Quan Xu, Hui Wu, Si Si Chen, Ji Jun Guo. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 25.11.2013. http://creativecommons.org/licenses/by/2.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be included. |
spellingShingle | Original Paper Liu, Chun Li Xu, Yue Quan Wu, Hui Chen, Si Si Guo, Ji Jun Correlation and Interaction Visualization of Altmetric Indicators Extracted From Scholarly Social Network Activities: Dimensions and Structure |
title | Correlation and Interaction Visualization of Altmetric Indicators Extracted From Scholarly Social Network Activities: Dimensions and Structure |
title_full | Correlation and Interaction Visualization of Altmetric Indicators Extracted From Scholarly Social Network Activities: Dimensions and Structure |
title_fullStr | Correlation and Interaction Visualization of Altmetric Indicators Extracted From Scholarly Social Network Activities: Dimensions and Structure |
title_full_unstemmed | Correlation and Interaction Visualization of Altmetric Indicators Extracted From Scholarly Social Network Activities: Dimensions and Structure |
title_short | Correlation and Interaction Visualization of Altmetric Indicators Extracted From Scholarly Social Network Activities: Dimensions and Structure |
title_sort | correlation and interaction visualization of altmetric indicators extracted from scholarly social network activities: dimensions and structure |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3841360/ https://www.ncbi.nlm.nih.gov/pubmed/24275693 http://dx.doi.org/10.2196/jmir.2707 |
work_keys_str_mv | AT liuchunli correlationandinteractionvisualizationofaltmetricindicatorsextractedfromscholarlysocialnetworkactivitiesdimensionsandstructure AT xuyuequan correlationandinteractionvisualizationofaltmetricindicatorsextractedfromscholarlysocialnetworkactivitiesdimensionsandstructure AT wuhui correlationandinteractionvisualizationofaltmetricindicatorsextractedfromscholarlysocialnetworkactivitiesdimensionsandstructure AT chensisi correlationandinteractionvisualizationofaltmetricindicatorsextractedfromscholarlysocialnetworkactivitiesdimensionsandstructure AT guojijun correlationandinteractionvisualizationofaltmetricindicatorsextractedfromscholarlysocialnetworkactivitiesdimensionsandstructure |