Cargando…
The Venom Gland Transcriptome of Latrodectus tredecimguttatus Revealed by Deep Sequencing and cDNA Library Analysis
Latrodectus tredecimguttatus, commonly known as black widow spider, is well known for its dangerous bite. Although its venom has been characterized extensively, some fundamental questions about its molecular composition remain unanswered. The limited transcriptome and genome data available prevent f...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3842942/ https://www.ncbi.nlm.nih.gov/pubmed/24312294 http://dx.doi.org/10.1371/journal.pone.0081357 |
_version_ | 1782293011626983424 |
---|---|
author | He, Quanze Duan, Zhigui Yu, Ying Liu, Zhen Liu, Zhonghua Liang, Songping |
author_facet | He, Quanze Duan, Zhigui Yu, Ying Liu, Zhen Liu, Zhonghua Liang, Songping |
author_sort | He, Quanze |
collection | PubMed |
description | Latrodectus tredecimguttatus, commonly known as black widow spider, is well known for its dangerous bite. Although its venom has been characterized extensively, some fundamental questions about its molecular composition remain unanswered. The limited transcriptome and genome data available prevent further understanding of spider venom at the molecular level. In the present study, we combined next-generation sequencing and conventional DNA sequencing to construct a venom gland transcriptome of the spider L. tredecimguttatus, which resulted in the identification of 9,666 and 480 high-confidence proteins among 34,334 de novo sequences and 1,024 cDNA sequences, respectively, by assembly, translation, filtering, quantification and annotation. Extensive functional analyses of these proteins indicated that mRNAs involved in RNA transport and spliceosome, protein translation, processing and transport were highly enriched in the venom gland, which is consistent with the specific function of venom glands, namely the production of toxins. Furthermore, we identified 146 toxin-like proteins forming 12 families, including 6 new families in this spider in which α-LTX-Lt1a family2 is firstly identified as a subfamily of α-LTX-Lt1a family. The toxins were classified according to their bioactivities into five categories that functioned in a coordinate way. Few ion channels were expressed in venom gland cells, suggesting a possible mechanism of protection from the attack of their own toxins. The present study provides a gland transcriptome profile and extends our understanding of the toxinome of spiders and coordination mechanism for toxin production in protein expression quantity. |
format | Online Article Text |
id | pubmed-3842942 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-38429422013-12-05 The Venom Gland Transcriptome of Latrodectus tredecimguttatus Revealed by Deep Sequencing and cDNA Library Analysis He, Quanze Duan, Zhigui Yu, Ying Liu, Zhen Liu, Zhonghua Liang, Songping PLoS One Research Article Latrodectus tredecimguttatus, commonly known as black widow spider, is well known for its dangerous bite. Although its venom has been characterized extensively, some fundamental questions about its molecular composition remain unanswered. The limited transcriptome and genome data available prevent further understanding of spider venom at the molecular level. In the present study, we combined next-generation sequencing and conventional DNA sequencing to construct a venom gland transcriptome of the spider L. tredecimguttatus, which resulted in the identification of 9,666 and 480 high-confidence proteins among 34,334 de novo sequences and 1,024 cDNA sequences, respectively, by assembly, translation, filtering, quantification and annotation. Extensive functional analyses of these proteins indicated that mRNAs involved in RNA transport and spliceosome, protein translation, processing and transport were highly enriched in the venom gland, which is consistent with the specific function of venom glands, namely the production of toxins. Furthermore, we identified 146 toxin-like proteins forming 12 families, including 6 new families in this spider in which α-LTX-Lt1a family2 is firstly identified as a subfamily of α-LTX-Lt1a family. The toxins were classified according to their bioactivities into five categories that functioned in a coordinate way. Few ion channels were expressed in venom gland cells, suggesting a possible mechanism of protection from the attack of their own toxins. The present study provides a gland transcriptome profile and extends our understanding of the toxinome of spiders and coordination mechanism for toxin production in protein expression quantity. Public Library of Science 2013-11-28 /pmc/articles/PMC3842942/ /pubmed/24312294 http://dx.doi.org/10.1371/journal.pone.0081357 Text en © 2013 He et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article He, Quanze Duan, Zhigui Yu, Ying Liu, Zhen Liu, Zhonghua Liang, Songping The Venom Gland Transcriptome of Latrodectus tredecimguttatus Revealed by Deep Sequencing and cDNA Library Analysis |
title | The Venom Gland Transcriptome of Latrodectus tredecimguttatus Revealed by Deep Sequencing and cDNA Library Analysis |
title_full | The Venom Gland Transcriptome of Latrodectus tredecimguttatus Revealed by Deep Sequencing and cDNA Library Analysis |
title_fullStr | The Venom Gland Transcriptome of Latrodectus tredecimguttatus Revealed by Deep Sequencing and cDNA Library Analysis |
title_full_unstemmed | The Venom Gland Transcriptome of Latrodectus tredecimguttatus Revealed by Deep Sequencing and cDNA Library Analysis |
title_short | The Venom Gland Transcriptome of Latrodectus tredecimguttatus Revealed by Deep Sequencing and cDNA Library Analysis |
title_sort | venom gland transcriptome of latrodectus tredecimguttatus revealed by deep sequencing and cdna library analysis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3842942/ https://www.ncbi.nlm.nih.gov/pubmed/24312294 http://dx.doi.org/10.1371/journal.pone.0081357 |
work_keys_str_mv | AT hequanze thevenomglandtranscriptomeoflatrodectustredecimguttatusrevealedbydeepsequencingandcdnalibraryanalysis AT duanzhigui thevenomglandtranscriptomeoflatrodectustredecimguttatusrevealedbydeepsequencingandcdnalibraryanalysis AT yuying thevenomglandtranscriptomeoflatrodectustredecimguttatusrevealedbydeepsequencingandcdnalibraryanalysis AT liuzhen thevenomglandtranscriptomeoflatrodectustredecimguttatusrevealedbydeepsequencingandcdnalibraryanalysis AT liuzhonghua thevenomglandtranscriptomeoflatrodectustredecimguttatusrevealedbydeepsequencingandcdnalibraryanalysis AT liangsongping thevenomglandtranscriptomeoflatrodectustredecimguttatusrevealedbydeepsequencingandcdnalibraryanalysis AT hequanze venomglandtranscriptomeoflatrodectustredecimguttatusrevealedbydeepsequencingandcdnalibraryanalysis AT duanzhigui venomglandtranscriptomeoflatrodectustredecimguttatusrevealedbydeepsequencingandcdnalibraryanalysis AT yuying venomglandtranscriptomeoflatrodectustredecimguttatusrevealedbydeepsequencingandcdnalibraryanalysis AT liuzhen venomglandtranscriptomeoflatrodectustredecimguttatusrevealedbydeepsequencingandcdnalibraryanalysis AT liuzhonghua venomglandtranscriptomeoflatrodectustredecimguttatusrevealedbydeepsequencingandcdnalibraryanalysis AT liangsongping venomglandtranscriptomeoflatrodectustredecimguttatusrevealedbydeepsequencingandcdnalibraryanalysis |