Cargando…

Optomechanical interface for probing matter-wave coherence

We combine matter-wave interferometry and cavity optomechanics to propose a coherent matter–light interface based on mechanical motion at the quantum level. We demonstrate a mechanism that is able to transfer non-classical features imprinted on the state of a matter-wave system to an optomechanical...

Descripción completa

Detalles Bibliográficos
Autores principales: Xuereb, André, Ulbricht, Hendrik, Paternostro, Mauro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3843315/
https://www.ncbi.nlm.nih.gov/pubmed/24287490
http://dx.doi.org/10.1038/srep03378
Descripción
Sumario:We combine matter-wave interferometry and cavity optomechanics to propose a coherent matter–light interface based on mechanical motion at the quantum level. We demonstrate a mechanism that is able to transfer non-classical features imprinted on the state of a matter-wave system to an optomechanical device, transducing them into distinctive interference fringes. This provides a reliable tool for the inference of quantum coherence in the particle beam. Moreover, we discuss how our system allows for intriguing perspectives, paving the way to the construction of a device for the encoding of quantum information in matter-wave systems. Our proposal, which highlights previously unforeseen possibilities for the synergistic exploitation of these two experimental platforms, is explicitly based on existing technology, available and widely used in current cutting-edge experiments.