Cargando…
Isolation and Functional Characterization of Calcitonin-Like Diuretic Hormone Receptors in Rhodnius prolixus
Several families of diuretic hormones exist in insects, one of which is the calcitonin-like diuretic hormone (CT/DH) family. CT/DH mediates its effects by binding to family B G-protein coupled receptors (GPCRs). Here we isolate and functionally characterize two R. prolixus CT/DH receptor paralogs (R...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3843727/ https://www.ncbi.nlm.nih.gov/pubmed/24312424 http://dx.doi.org/10.1371/journal.pone.0082466 |
Sumario: | Several families of diuretic hormones exist in insects, one of which is the calcitonin-like diuretic hormone (CT/DH) family. CT/DH mediates its effects by binding to family B G-protein coupled receptors (GPCRs). Here we isolate and functionally characterize two R. prolixus CT/DH receptor paralogs (Rhopr-CT/DH-R1 and Rhopr-CT/DH-R2) using a novel heterologous assay utilizing a modified human embryonic kidney 293 (HEK293) cell line. Rhopr-CT/DH-R1 is orthologous to the previously characterized D. melanogaster CT/DH receptor (CG17415) while Rhopr-CT/DH-R2 is orthologous to the D. melanogaster receptor (CG4395), an orphan receptor whose ligand was unknown until now. We determine the cDNA sequences of three splice variants encoding Rhopr-CT/DH-R1 (Rhopr-CT/DH-R1-A, Rhopr-CT/DH-R1-B and Rhopr-CT/DH-R1-C) and two splice variants encoding Rhopr-CT/DH-R2 (Rhopr-CT/DH-R2-A and Rhopr-CT/DH-R2-B). Rhopr-CT/DH-R1-A and Rhopr-CT/DH-R2-A encode truncated receptors that lack six and seven of the characteristic seven transmembrane domains, respectively. Rhopr-CT/DH-R1-B and Rhopr-CT/DH-R1-C, which only differ by 2 amino acids in their C-terminal domain, can both be activated by Rhopr-CT/DH at equal sensitivities (EC(50) = 200-300nM). Interestingly, Rhopr-CT/DH-R2-B is much more sensitive to Rhopr-CT/DH (EC(50) = 15nM) compared to Rhopr-CT/DH-R1-B/C and also yields a much greater response (amplitude) in our heterologous assay. This is the first study to reveal that insects possess at least two CT/DH receptors, which may be functionally different. Quantitative PCR demonstrates that Rhopr-CT/DH-R1 and Rhopr-CT/DH-R2 have distinct expression patterns, with both receptors expressed centrally and peripherally. Moreover, the expression analysis also identified novel target tissues for this neuropeptide, including testes, ovaries and prothoracic glands, suggesting a possible role for Rhopr-CT/DH in reproductive physiology and development. |
---|