Cargando…
Skeletal Correlates for Body Mass Estimation in Modern and Fossil Flying Birds
Scaling relationships between skeletal dimensions and body mass in extant birds are often used to estimate body mass in fossil crown-group birds, as well as in stem-group avialans. However, useful statistical measurements for constraining the precision and accuracy of fossil mass estimates are rarel...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3843728/ https://www.ncbi.nlm.nih.gov/pubmed/24312392 http://dx.doi.org/10.1371/journal.pone.0082000 |
_version_ | 1782293094610239488 |
---|---|
author | Field, Daniel J. Lynner, Colton Brown, Christian Darroch, Simon A. F. |
author_facet | Field, Daniel J. Lynner, Colton Brown, Christian Darroch, Simon A. F. |
author_sort | Field, Daniel J. |
collection | PubMed |
description | Scaling relationships between skeletal dimensions and body mass in extant birds are often used to estimate body mass in fossil crown-group birds, as well as in stem-group avialans. However, useful statistical measurements for constraining the precision and accuracy of fossil mass estimates are rarely provided, which prevents the quantification of robust upper and lower bound body mass estimates for fossils. Here, we generate thirteen body mass correlations and associated measures of statistical robustness using a sample of 863 extant flying birds. By providing robust body mass regressions with upper- and lower-bound prediction intervals for individual skeletal elements, we address the longstanding problem of body mass estimation for highly fragmentary fossil birds. We demonstrate that the most precise proxy for estimating body mass in the overall dataset, measured both as coefficient determination of ordinary least squares regression and percent prediction error, is the maximum diameter of the coracoid’s humeral articulation facet (the glenoid). We further demonstrate that this result is consistent among the majority of investigated avian orders (10 out of 18). As a result, we suggest that, in the majority of cases, this proxy may provide the most accurate estimates of body mass for volant fossil birds. Additionally, by presenting statistical measurements of body mass prediction error for thirteen different body mass regressions, this study provides a much-needed quantitative framework for the accurate estimation of body mass and associated ecological correlates in fossil birds. The application of these regressions will enhance the precision and robustness of many mass-based inferences in future paleornithological studies. |
format | Online Article Text |
id | pubmed-3843728 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-38437282013-12-05 Skeletal Correlates for Body Mass Estimation in Modern and Fossil Flying Birds Field, Daniel J. Lynner, Colton Brown, Christian Darroch, Simon A. F. PLoS One Research Article Scaling relationships between skeletal dimensions and body mass in extant birds are often used to estimate body mass in fossil crown-group birds, as well as in stem-group avialans. However, useful statistical measurements for constraining the precision and accuracy of fossil mass estimates are rarely provided, which prevents the quantification of robust upper and lower bound body mass estimates for fossils. Here, we generate thirteen body mass correlations and associated measures of statistical robustness using a sample of 863 extant flying birds. By providing robust body mass regressions with upper- and lower-bound prediction intervals for individual skeletal elements, we address the longstanding problem of body mass estimation for highly fragmentary fossil birds. We demonstrate that the most precise proxy for estimating body mass in the overall dataset, measured both as coefficient determination of ordinary least squares regression and percent prediction error, is the maximum diameter of the coracoid’s humeral articulation facet (the glenoid). We further demonstrate that this result is consistent among the majority of investigated avian orders (10 out of 18). As a result, we suggest that, in the majority of cases, this proxy may provide the most accurate estimates of body mass for volant fossil birds. Additionally, by presenting statistical measurements of body mass prediction error for thirteen different body mass regressions, this study provides a much-needed quantitative framework for the accurate estimation of body mass and associated ecological correlates in fossil birds. The application of these regressions will enhance the precision and robustness of many mass-based inferences in future paleornithological studies. Public Library of Science 2013-11-29 /pmc/articles/PMC3843728/ /pubmed/24312392 http://dx.doi.org/10.1371/journal.pone.0082000 Text en © 2013 Field et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Field, Daniel J. Lynner, Colton Brown, Christian Darroch, Simon A. F. Skeletal Correlates for Body Mass Estimation in Modern and Fossil Flying Birds |
title | Skeletal Correlates for Body Mass Estimation in Modern and Fossil Flying Birds |
title_full | Skeletal Correlates for Body Mass Estimation in Modern and Fossil Flying Birds |
title_fullStr | Skeletal Correlates for Body Mass Estimation in Modern and Fossil Flying Birds |
title_full_unstemmed | Skeletal Correlates for Body Mass Estimation in Modern and Fossil Flying Birds |
title_short | Skeletal Correlates for Body Mass Estimation in Modern and Fossil Flying Birds |
title_sort | skeletal correlates for body mass estimation in modern and fossil flying birds |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3843728/ https://www.ncbi.nlm.nih.gov/pubmed/24312392 http://dx.doi.org/10.1371/journal.pone.0082000 |
work_keys_str_mv | AT fielddanielj skeletalcorrelatesforbodymassestimationinmodernandfossilflyingbirds AT lynnercolton skeletalcorrelatesforbodymassestimationinmodernandfossilflyingbirds AT brownchristian skeletalcorrelatesforbodymassestimationinmodernandfossilflyingbirds AT darrochsimonaf skeletalcorrelatesforbodymassestimationinmodernandfossilflyingbirds |