Cargando…
A Note on Decomposing a Square Matrix as Sum of Two Square Nilpotent Matrices over an Arbitrary Field
Let K be an arbitrary field and X a square matrix over K. Then X is sum of two square nilpotent matrices over K if and only if, for every algebraic extension L of K and arbitrary nonzero α ∈ L, there exist idempotent matrices P (1) and P (2) over L such that X = αP (1) − αP (2).
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3844223/ https://www.ncbi.nlm.nih.gov/pubmed/24319379 http://dx.doi.org/10.1155/2013/640350 |
Sumario: | Let K be an arbitrary field and X a square matrix over K. Then X is sum of two square nilpotent matrices over K if and only if, for every algebraic extension L of K and arbitrary nonzero α ∈ L, there exist idempotent matrices P (1) and P (2) over L such that X = αP (1) − αP (2). |
---|