Cargando…

Bifurcations and Stability of Nondegenerated Homoclinic Loops for Higher Dimensional Systems

By using the foundational solutions of the linear variational equation of the unperturbed system along the homoclinic orbit as the local current coordinates system of the system in the small neighborhood of the homoclinic orbit, we discuss the bifurcation problems of nondegenerated homoclinic loops....

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Yinlai, Li, Feng, Xu, Han, Li, Jing, Zhang, Liqun, Ding, Benyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3844278/
https://www.ncbi.nlm.nih.gov/pubmed/24369487
http://dx.doi.org/10.1155/2013/582820
Descripción
Sumario:By using the foundational solutions of the linear variational equation of the unperturbed system along the homoclinic orbit as the local current coordinates system of the system in the small neighborhood of the homoclinic orbit, we discuss the bifurcation problems of nondegenerated homoclinic loops. Under the nonresonant condition, existence, uniqueness, and incoexistence of 1-homoclinic loop and 1-periodic orbit, the inexistence of k-homoclinic loop and k-periodic orbit is obtained. Under the resonant condition, we study the existence of 1-homoclinic loop, 1-periodic orbit, 2-fold 1-periodic orbit, and two 1-periodic orbits; the coexistence of 1-homoclinic loop and 1-periodic orbit. Moreover, we give the corresponding existence fields and bifurcation surfaces. At last, we study the stability of the homoclinic loop for the two cases of non-resonant and resonant, and we obtain the corresponding criterions.