Cargando…
The emergence of two anti-phase oscillatory neural populations in a computational model of the Parkinsonian globus pallidus
Experiments in rodent models of Parkinson's disease have demonstrated a prominent increase of oscillatory firing patterns in neurons within the Parkinsonian globus pallidus (GP) which may underlie some of the motor symptoms of the disease. There are two main pathways from the cortex to GP: via...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3844854/ https://www.ncbi.nlm.nih.gov/pubmed/24348374 http://dx.doi.org/10.3389/fncom.2013.00173 |
_version_ | 1782293251010592768 |
---|---|
author | Merrison-Hort, Robert Borisyuk, Roman |
author_facet | Merrison-Hort, Robert Borisyuk, Roman |
author_sort | Merrison-Hort, Robert |
collection | PubMed |
description | Experiments in rodent models of Parkinson's disease have demonstrated a prominent increase of oscillatory firing patterns in neurons within the Parkinsonian globus pallidus (GP) which may underlie some of the motor symptoms of the disease. There are two main pathways from the cortex to GP: via the striatum and via the subthalamic nucleus (STN), but it is not known how these inputs sculpt the pathological pallidal firing patterns. To study this we developed a novel neural network model of conductance-based spiking pallidal neurons with cortex-modulated input from STN neurons. Our results support the hypothesis that entrainment occurs primarily via the subthalamic pathway. We find that as a result of the interplay between excitatory input from the STN and mutual inhibitory coupling between GP neurons, a homogeneous population of GP neurons demonstrates a self-organizing dynamical behavior where two groups of neurons emerge: one spiking in-phase with the cortical rhythm and the other in anti-phase. This finding mirrors what is seen in recordings from the GP of rodents that have had Parkinsonism induced via brain lesions. Our model also includes downregulation of Hyperpolarization-activated Cyclic Nucleotide-gated (HCN) channels in response to burst firing of GP neurons, since this has been suggested as a possible mechanism for the emergence of Parkinsonian activity. We found that the downregulation of HCN channels provides even better correspondence with experimental data but that it is not essential in order for the two groups of oscillatory neurons to appear. We discuss how the influence of inhibitory striatal input will strengthen our results. |
format | Online Article Text |
id | pubmed-3844854 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-38448542013-12-13 The emergence of two anti-phase oscillatory neural populations in a computational model of the Parkinsonian globus pallidus Merrison-Hort, Robert Borisyuk, Roman Front Comput Neurosci Neuroscience Experiments in rodent models of Parkinson's disease have demonstrated a prominent increase of oscillatory firing patterns in neurons within the Parkinsonian globus pallidus (GP) which may underlie some of the motor symptoms of the disease. There are two main pathways from the cortex to GP: via the striatum and via the subthalamic nucleus (STN), but it is not known how these inputs sculpt the pathological pallidal firing patterns. To study this we developed a novel neural network model of conductance-based spiking pallidal neurons with cortex-modulated input from STN neurons. Our results support the hypothesis that entrainment occurs primarily via the subthalamic pathway. We find that as a result of the interplay between excitatory input from the STN and mutual inhibitory coupling between GP neurons, a homogeneous population of GP neurons demonstrates a self-organizing dynamical behavior where two groups of neurons emerge: one spiking in-phase with the cortical rhythm and the other in anti-phase. This finding mirrors what is seen in recordings from the GP of rodents that have had Parkinsonism induced via brain lesions. Our model also includes downregulation of Hyperpolarization-activated Cyclic Nucleotide-gated (HCN) channels in response to burst firing of GP neurons, since this has been suggested as a possible mechanism for the emergence of Parkinsonian activity. We found that the downregulation of HCN channels provides even better correspondence with experimental data but that it is not essential in order for the two groups of oscillatory neurons to appear. We discuss how the influence of inhibitory striatal input will strengthen our results. Frontiers Media S.A. 2013-12-02 /pmc/articles/PMC3844854/ /pubmed/24348374 http://dx.doi.org/10.3389/fncom.2013.00173 Text en Copyright © 2013 Merrison-Hort and Borisyuk. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Merrison-Hort, Robert Borisyuk, Roman The emergence of two anti-phase oscillatory neural populations in a computational model of the Parkinsonian globus pallidus |
title | The emergence of two anti-phase oscillatory neural populations in a computational model of the Parkinsonian globus pallidus |
title_full | The emergence of two anti-phase oscillatory neural populations in a computational model of the Parkinsonian globus pallidus |
title_fullStr | The emergence of two anti-phase oscillatory neural populations in a computational model of the Parkinsonian globus pallidus |
title_full_unstemmed | The emergence of two anti-phase oscillatory neural populations in a computational model of the Parkinsonian globus pallidus |
title_short | The emergence of two anti-phase oscillatory neural populations in a computational model of the Parkinsonian globus pallidus |
title_sort | emergence of two anti-phase oscillatory neural populations in a computational model of the parkinsonian globus pallidus |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3844854/ https://www.ncbi.nlm.nih.gov/pubmed/24348374 http://dx.doi.org/10.3389/fncom.2013.00173 |
work_keys_str_mv | AT merrisonhortrobert theemergenceoftwoantiphaseoscillatoryneuralpopulationsinacomputationalmodeloftheparkinsonianglobuspallidus AT borisyukroman theemergenceoftwoantiphaseoscillatoryneuralpopulationsinacomputationalmodeloftheparkinsonianglobuspallidus AT merrisonhortrobert emergenceoftwoantiphaseoscillatoryneuralpopulationsinacomputationalmodeloftheparkinsonianglobuspallidus AT borisyukroman emergenceoftwoantiphaseoscillatoryneuralpopulationsinacomputationalmodeloftheparkinsonianglobuspallidus |