Cargando…
Network analysis of unstructured EHR data for clinical research
In biomedical research, network analysis provides a conceptual framework for interpreting data from high-throughput experiments. For example, protein-protein interaction networks have been successfully used to identify candidate disease genes. Recently, advances in clinical text processing and the i...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Informatics Association
201
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3845760/ https://www.ncbi.nlm.nih.gov/pubmed/24303229 |
_version_ | 1782293362391384064 |
---|---|
author | Bauer-Mehren, Anna LePendu, Paea Iyer, Srinivasan V Harpaz, Rave Leeper, Nicholas J Shah, Nigam H |
author_facet | Bauer-Mehren, Anna LePendu, Paea Iyer, Srinivasan V Harpaz, Rave Leeper, Nicholas J Shah, Nigam H |
author_sort | Bauer-Mehren, Anna |
collection | PubMed |
description | In biomedical research, network analysis provides a conceptual framework for interpreting data from high-throughput experiments. For example, protein-protein interaction networks have been successfully used to identify candidate disease genes. Recently, advances in clinical text processing and the increasing availability of clinical data have enabled analogous analyses on data from electronic medical records. We constructed networks of diseases, drugs, medical devices and procedures using concepts recognized in clinical notes from the Stanford clinical data warehouse. We demonstrate the use of the resulting networks for clinical research informatics in two ways—cohort construction and outcomes analysis—by examining the safety of cilostazol in peripheral artery disease patients as a use case. We show that the network-based approaches can be used for constructing patient cohorts as well as for analyzing differences in outcomes by comparing with standard methods, and discuss the advantages offered by network-based approaches. |
format | Online Article Text |
id | pubmed-3845760 |
institution | National Center for Biotechnology Information |
language | English |
publishDate |
201 |
publisher |
American Medical Informatics Association
|
record_format | MEDLINE/PubMed |
spelling | pubmed-38457602013-12-03 Network analysis of unstructured EHR data for clinical research Bauer-Mehren, Anna LePendu, Paea Iyer, Srinivasan V Harpaz, Rave Leeper, Nicholas J Shah, Nigam H AMIA Jt Summits Transl Sci Proc Articles In biomedical research, network analysis provides a conceptual framework for interpreting data from high-throughput experiments. For example, protein-protein interaction networks have been successfully used to identify candidate disease genes. Recently, advances in clinical text processing and the increasing availability of clinical data have enabled analogous analyses on data from electronic medical records. We constructed networks of diseases, drugs, medical devices and procedures using concepts recognized in clinical notes from the Stanford clinical data warehouse. We demonstrate the use of the resulting networks for clinical research informatics in two ways—cohort construction and outcomes analysis—by examining the safety of cilostazol in peripheral artery disease patients as a use case. We show that the network-based approaches can be used for constructing patient cohorts as well as for analyzing differences in outcomes by comparing with standard methods, and discuss the advantages offered by network-based approaches. American Medical Informatics Association 2013 -03- 18 /pmc/articles/PMC3845760/ /pubmed/24303229 Text en ©2013 AMIA - All rights reserved. |
spellingShingle | Articles Bauer-Mehren, Anna LePendu, Paea Iyer, Srinivasan V Harpaz, Rave Leeper, Nicholas J Shah, Nigam H Network analysis of unstructured EHR data for clinical research |
title |
Network analysis of unstructured EHR data for clinical research
|
title_full |
Network analysis of unstructured EHR data for clinical research
|
title_fullStr |
Network analysis of unstructured EHR data for clinical research
|
title_full_unstemmed |
Network analysis of unstructured EHR data for clinical research
|
title_short |
Network analysis of unstructured EHR data for clinical research
|
title_sort | network analysis of unstructured ehr data for clinical research |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3845760/ https://www.ncbi.nlm.nih.gov/pubmed/24303229 |
work_keys_str_mv | AT bauermehrenanna networkanalysisofunstructuredehrdataforclinicalresearch AT lependupaea networkanalysisofunstructuredehrdataforclinicalresearch AT iyersrinivasanv networkanalysisofunstructuredehrdataforclinicalresearch AT harpazrave networkanalysisofunstructuredehrdataforclinicalresearch AT leepernicholasj networkanalysisofunstructuredehrdataforclinicalresearch AT shahnigamh networkanalysisofunstructuredehrdataforclinicalresearch |