Cargando…
Automatic Classification of Free-Text Radiology Reports to Identify Limb Fractures using Machine Learning and the SNOMED CT Ontology
OBJECTIVE: To develop and evaluate machine learning techniques that identify limb fractures and other abnormalities (e.g. dislocations) from radiology reports. MATERIALS AND METHODS: 99 free-text reports of limb radiology examinations were acquired from an Australian public hospital. Two clinicians...
Autores principales: | Zuccon, Guido, Wagholikar, Amol S, Nguyen, Anthony N, Butt, Luke, Chu, Kevin, Martin, Shane, Greenslade, Jaimi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Informatics Association
201
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3845773/ https://www.ncbi.nlm.nih.gov/pubmed/24303284 |
Ejemplares similares
-
Ontological analysis of SNOMED CT
por: Héja, Gergely, et al.
Publicado: (2008) -
SNOMED CT standard ontology based on the ontology for general medical science
por: El-Sappagh, Shaker, et al.
Publicado: (2018) -
SNOMED CT – advances in concept mapping, retrieval, and ontological foundations. Selected contributions to the Semantic Mining Conference on SNOMED CT (SMCS 2006)
por: Schulz, Stefan, et al.
Publicado: (2008) -
Using SNOMED-CT to encode summary level data – a corpus analysis
por: Liu, Hongfang, et al.
Publicado: (2012) -
Interoperability of Disease Concepts in Clinical and Research Ontologies: Contrasting Coverage and Structure in the Disease Ontology and SNOMED CT
por: Raje, Satyajeet, et al.
Publicado: (2017)