Cargando…
Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells
While adult heart muscle is the least regenerative of tissues, embryonic cardiomyocytes are proliferative, with embryonic stem (ES) cells providing an endless reservoir. In addition to secreted factors and cell–cell interactions, the extracellular microenvironment has been shown to play an important...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3845966/ https://www.ncbi.nlm.nih.gov/pubmed/24311969 http://dx.doi.org/10.1088/1468-6996/14/2/025003 |
_version_ | 1782293377794965504 |
---|---|
author | Arshi, Armin Nakashima, Yasuhiro Nakano, Haruko Eaimkhong, Sarayoot Evseenko, Denis Reed, Jason Stieg, Adam Z Gimzewski, James K Nakano, Atsushi |
author_facet | Arshi, Armin Nakashima, Yasuhiro Nakano, Haruko Eaimkhong, Sarayoot Evseenko, Denis Reed, Jason Stieg, Adam Z Gimzewski, James K Nakano, Atsushi |
author_sort | Arshi, Armin |
collection | PubMed |
description | While adult heart muscle is the least regenerative of tissues, embryonic cardiomyocytes are proliferative, with embryonic stem (ES) cells providing an endless reservoir. In addition to secreted factors and cell–cell interactions, the extracellular microenvironment has been shown to play an important role in stem cell lineage specification, and understanding how scaffold elasticity influences cardiac differentiation is crucial to cardiac tissue engineering. Though previous studies have analyzed the role of matrix elasticity on the function of differentiated cardiomyocytes, whether it affects the induction of cardiomyocytes from pluripotent stem cells is poorly understood. Here, we examine the role of matrix rigidity on cardiac differentiation using mouse and human ES cells. Culture on polydimethylsiloxane (PDMS) substrates of varied monomer-to-crosslinker ratios revealed that rigid extracellular matrices promote a higher yield of de novo cardiomyocytes from undifferentiated ES cells. Using a genetically modified ES system that allows us to purify differentiated cardiomyocytes by drug selection, we demonstrate that rigid environments induce higher cardiac troponin T expression, beating rate of foci, and expression ratio of adult α- to fetal β- myosin heavy chain in a purified cardiac population. M-mode and mechanical interferometry image analyses demonstrate that these ES-derived cardiomyocytes display functional maturity and synchronization of beating when co-cultured with neonatal cardiomyocytes harvested from a developing embryo. Together, these data identify matrix stiffness as an independent factor that instructs not only the maturation of already differentiated cardiomyocytes but also the induction and proliferation of cardiomyocytes from undifferentiated progenitors. Manipulation of the stiffness will help direct the production of functional cardiomyocytes en masse from stem cells for regenerative medicine purposes. |
format | Online Article Text |
id | pubmed-3845966 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-38459662014-08-01 Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells Arshi, Armin Nakashima, Yasuhiro Nakano, Haruko Eaimkhong, Sarayoot Evseenko, Denis Reed, Jason Stieg, Adam Z Gimzewski, James K Nakano, Atsushi Sci Technol Adv Mater Articles While adult heart muscle is the least regenerative of tissues, embryonic cardiomyocytes are proliferative, with embryonic stem (ES) cells providing an endless reservoir. In addition to secreted factors and cell–cell interactions, the extracellular microenvironment has been shown to play an important role in stem cell lineage specification, and understanding how scaffold elasticity influences cardiac differentiation is crucial to cardiac tissue engineering. Though previous studies have analyzed the role of matrix elasticity on the function of differentiated cardiomyocytes, whether it affects the induction of cardiomyocytes from pluripotent stem cells is poorly understood. Here, we examine the role of matrix rigidity on cardiac differentiation using mouse and human ES cells. Culture on polydimethylsiloxane (PDMS) substrates of varied monomer-to-crosslinker ratios revealed that rigid extracellular matrices promote a higher yield of de novo cardiomyocytes from undifferentiated ES cells. Using a genetically modified ES system that allows us to purify differentiated cardiomyocytes by drug selection, we demonstrate that rigid environments induce higher cardiac troponin T expression, beating rate of foci, and expression ratio of adult α- to fetal β- myosin heavy chain in a purified cardiac population. M-mode and mechanical interferometry image analyses demonstrate that these ES-derived cardiomyocytes display functional maturity and synchronization of beating when co-cultured with neonatal cardiomyocytes harvested from a developing embryo. Together, these data identify matrix stiffness as an independent factor that instructs not only the maturation of already differentiated cardiomyocytes but also the induction and proliferation of cardiomyocytes from undifferentiated progenitors. Manipulation of the stiffness will help direct the production of functional cardiomyocytes en masse from stem cells for regenerative medicine purposes. Taylor & Francis 2013-04-11 /pmc/articles/PMC3845966/ /pubmed/24311969 http://dx.doi.org/10.1088/1468-6996/14/2/025003 Text en © 2013 National Institute for Materials Science http://creativecommons.org/licenses/by-nc-sa/3.0/ Content from this work may be used under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 licence (http://creativecommons.org/licenses/by-nc-sa/3.0) . Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
spellingShingle | Articles Arshi, Armin Nakashima, Yasuhiro Nakano, Haruko Eaimkhong, Sarayoot Evseenko, Denis Reed, Jason Stieg, Adam Z Gimzewski, James K Nakano, Atsushi Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells |
title | Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells |
title_full | Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells |
title_fullStr | Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells |
title_full_unstemmed | Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells |
title_short | Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells |
title_sort | rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3845966/ https://www.ncbi.nlm.nih.gov/pubmed/24311969 http://dx.doi.org/10.1088/1468-6996/14/2/025003 |
work_keys_str_mv | AT arshiarmin rigidmicroenvironmentspromotecardiacdifferentiationofmouseandhumanembryonicstemcells AT nakashimayasuhiro rigidmicroenvironmentspromotecardiacdifferentiationofmouseandhumanembryonicstemcells AT nakanoharuko rigidmicroenvironmentspromotecardiacdifferentiationofmouseandhumanembryonicstemcells AT eaimkhongsarayoot rigidmicroenvironmentspromotecardiacdifferentiationofmouseandhumanembryonicstemcells AT evseenkodenis rigidmicroenvironmentspromotecardiacdifferentiationofmouseandhumanembryonicstemcells AT reedjason rigidmicroenvironmentspromotecardiacdifferentiationofmouseandhumanembryonicstemcells AT stiegadamz rigidmicroenvironmentspromotecardiacdifferentiationofmouseandhumanembryonicstemcells AT gimzewskijamesk rigidmicroenvironmentspromotecardiacdifferentiationofmouseandhumanembryonicstemcells AT nakanoatsushi rigidmicroenvironmentspromotecardiacdifferentiationofmouseandhumanembryonicstemcells |