Cargando…

Synthesis and biological evaluation of novel benzyl piperazine derivatives of 5-(5-nitroaryl)-1,3,4-thiadiazoles as Anti-Helicobacter pylori agents

BACKGROUND AND THE PURPOSE OF THE STUDY: Helicobacter pylori is recognized as the main cause of gastritis and gastroduodenal ulcers and classified as class 1 carcinogen pathogen. Different 1,3,4-thiadiazole derivatives bearing 5-nitroaryl moiety have been shown considerable anti- H. pylori activity....

Descripción completa

Detalles Bibliográficos
Autores principales: Mohammadhosseini, Negar, Saniee, Parastoo, Ghamaripour, Ameneh, Aryapour, Hassan, Afshar, Farzaneh, Edraki, Najmeh, Siavoshi, Farideh, Foroumadi, Alireza, Shafiee, Abbas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3846157/
https://www.ncbi.nlm.nih.gov/pubmed/23924894
http://dx.doi.org/10.1186/2008-2231-21-66
Descripción
Sumario:BACKGROUND AND THE PURPOSE OF THE STUDY: Helicobacter pylori is recognized as the main cause of gastritis and gastroduodenal ulcers and classified as class 1 carcinogen pathogen. Different 1,3,4-thiadiazole derivatives bearing 5-nitroaryl moiety have been shown considerable anti- H. pylori activity. In attempt to find new and potent derivatives of described scaffold, a new series of 1-(substituted benzyl)-4-(5-(5-nitroaryl-2-yl)-1,3,4-thiadiazol-2-yl)piperazine derivatives were synthesized and evaluated against three metronidazole-resistant isolates of H. pylori using paper disk diffusion bioassay test. METHODS: The title compounds were prepared through the reaction of 1-(5-(5-nitroaryl-2-yl)-1,3,4-thiadiazol-2-yl) piperazine 5a-b and substituted benzyl chloride in DMF. The inhibitory activity of the new derivatives 6a-q against three metronidazole-resistant isolates of H. pylori was evaluated by the disc diffusion method and compared with the commercially available standard drug metronidazole. RESULTS AND DISCUSSION: The results of SAR study indicated that the potency and anti-H. pylori activity profile of synthesized derivatives is mainly attributed to the substituted nitroaryl moiety at the C-5 position of 1,3,4-thiadiazole ring. Most of 1,3,4-thiadiazole derivatives bearing 5-nitrofuran moiety at C-5 position of central thiadiazole ring, demonstrated more promising anti-H. pylori than the 5-nitrothiophen counterpart. CONCLUSION: The most potent nitrofuran derivative containing 3-methoxybenzyl piperazine pendant at the C-2 position of 1,3,4-thiadiazole ring (compound 6i), demonstrated strong anti-H. pylori potential at studied concentrations 100-25 μg/disk (IZD > 20 mm) against all studied metronidazole- resistant isolates of H. pylori.