Cargando…
Effect of DNA methylation inhibitor on RASSF1A genes expression in non-small cell lung cancer cell line A549 and A549DDP
BACKGROUND: Ras association domain family 1A gene (RASSFlA) is a candidate suppressor gene, Lack of RASSF1A expression was found in lung cancer. High DNA methylation at the promoter region is the main reason for inactivating RASSF1A transcription. METHODS: In this study, we examined RASSF1A’s methyl...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3846638/ https://www.ncbi.nlm.nih.gov/pubmed/24011511 http://dx.doi.org/10.1186/1475-2867-13-91 |
Sumario: | BACKGROUND: Ras association domain family 1A gene (RASSFlA) is a candidate suppressor gene, Lack of RASSF1A expression was found in lung cancer. High DNA methylation at the promoter region is the main reason for inactivating RASSF1A transcription. METHODS: In this study, we examined RASSF1A’s methylation status and its mRNA expression level between non-small cell lung cancer cell line A549 and anti-Cisplatin cell strain A549DDP, Furthermore, methylation of A549DDP was reversed by treatment of 5-Aza-2′ - deoxycytidine (5-Aza-cdR),a DNA methyltransferase inhibitor. RESULTS: We found that RASSF1A’s methylation status and its mRNA expression were obvious differences between A549 and A549DDP. 5-Aza-CdR treatment remarkablly reduced cell vability of A549DDP. Moreover, 5-Aza-CdR treatment induced A549DDP cell apoptosis in a dose dependent manner with declining cell percentage in S and G2/M stage, and increasing proportion in G0/G1 stage. Cell motility was blocked in G0/G1 stage. All of A549DDP cells showed unmethylated expression, its high methylation status was reversed in a dose-dependent manner within a certain range. CONCLUSIONS: The abnormal gene methylation status of RASSF1A is a molecular biomarker in lung cancer diagnosis, treatment and prognosis. |
---|