Cargando…
A Machine Learned Classifier That Uses Gene Expression Data to Accurately Predict Estrogen Receptor Status
BACKGROUND: Selecting the appropriate treatment for breast cancer requires accurately determining the estrogen receptor (ER) status of the tumor. However, the standard for determining this status, immunohistochemical analysis of formalin-fixed paraffin embedded samples, suffers from numerous technic...
Autores principales: | Bastani, Meysam, Vos, Larissa, Asgarian, Nasimeh, Deschenes, Jean, Graham, Kathryn, Mackey, John, Greiner, Russell |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3846850/ https://www.ncbi.nlm.nih.gov/pubmed/24312637 http://dx.doi.org/10.1371/journal.pone.0082144 |
Ejemplares similares
-
ADHD-200 Global Competition: diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements
por: Brown, Matthew R. G., et al.
Publicado: (2012) -
Kernel Principal Component Analysis for dimensionality reduction in fMRI-based diagnosis of ADHD
por: Sidhu, Gagan S., et al.
Publicado: (2012) -
ETHNOPRED: a novel machine learning method for accurate continental and sub-continental ancestry identification and population stratification correction
por: Hajiloo, Mohsen, et al.
Publicado: (2013) -
Machine learning accurately classifies age of toddlers based on eye tracking
por: Dalrymple, Kirsten A., et al.
Publicado: (2019) -
Effects of Sample Size on Differential Gene Expression, Rank Order and Prediction Accuracy of a Gene Signature
por: Stretch, Cynthia, et al.
Publicado: (2013)