Cargando…
An enhancement of binary particle swarm optimization for gene selection in classifying cancer classes
BACKGROUND: Gene expression data could likely be a momentous help in the progress of proficient cancer diagnoses and classification platforms. Lately, many researchers analyze gene expression data using diverse computational intelligence methods, for selecting a small subset of informative genes fro...
Autores principales: | Mohamad, Mohd Saberi, Omatu, Sigeru, Deris, Safaai, Yoshioka, Michifumi, Abdullah, Afnizanfaizal, Ibrahim, Zuwairie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3847130/ https://www.ncbi.nlm.nih.gov/pubmed/23617960 http://dx.doi.org/10.1186/1748-7188-8-15 |
Ejemplares similares
-
An Improved Swarm Optimization for Parameter Estimation and Biological Model Selection
por: Abdullah, Afnizanfaizal, et al.
Publicado: (2013) -
Correction: An Improved Swarm Optimization for Parameter Estimation and Biological Model Selection
por: Abdullah, Afnizanfaizal, et al.
Publicado: (2013) -
A Newton Cooperative Genetic Algorithm Method for In Silico Optimization of Metabolic Pathway Production
por: Ismail, Mohd Arfian, et al.
Publicado: (2015) -
Gene Knockout Identification Using an Extension of Bees Hill Flux Balance Analysis
por: Choon, Yee Wen, et al.
Publicado: (2015) -
Differential Bees Flux Balance Analysis with OptKnock for In Silico Microbial Strains Optimization
por: Choon, Yee Wen, et al.
Publicado: (2014)