Cargando…
Diabetic retinopathy risk prediction for fundus examination using sparse learning: a cross-sectional study
BACKGROUND: Blindness due to diabetic retinopathy (DR) is the major disability in diabetic patients. Although early management has shown to prevent vision loss, diabetic patients have a low rate of routine ophthalmologic examination. Hence, we developed and validated sparse learning models with the...
Autores principales: | Oh, Ein, Yoo, Tae Keun, Park, Eun-Cheol |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3847617/ https://www.ncbi.nlm.nih.gov/pubmed/24033926 http://dx.doi.org/10.1186/1472-6947-13-106 |
Ejemplares similares
-
Simple Scoring System and Artificial Neural Network for Knee Osteoarthritis Risk Prediction: A Cross-Sectional Study
por: Yoo, Tae Keun, et al.
Publicado: (2016) -
Fundus fluorescence Angiography in diagnosing diabetic retinopathy
por: Wang, Shuhui, et al.
Publicado: (2017) -
Selfie fundus imaging for diabetic retinopathy screening
por: Kumari, Somya, et al.
Publicado: (2021) -
A Deep Learning Framework for Earlier Prediction of Diabetic Retinopathy from Fundus Photographs
por: Gunasekaran, K., et al.
Publicado: (2022) -
Early detection of diabetic retinopathy based on deep learning and ultra-wide-field fundus images
por: Oh, Kangrok, et al.
Publicado: (2021)