Cargando…

Triplex-Induced DNA Damage Response

Cellular DNA damage response is critical to preserving genomic integrity following exposure to genotoxic stress. A complex series of networks and signaling pathways become activated after DNA damage and trigger the appropriate cellular response, including cell cycle arrest, DNA repair, and apoptosis...

Descripción completa

Detalles Bibliográficos
Autores principales: Rogers, Faye A., Tiwari, Meetu Kaushik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: YJBM 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3848101/
https://www.ncbi.nlm.nih.gov/pubmed/24348211
Descripción
Sumario:Cellular DNA damage response is critical to preserving genomic integrity following exposure to genotoxic stress. A complex series of networks and signaling pathways become activated after DNA damage and trigger the appropriate cellular response, including cell cycle arrest, DNA repair, and apoptosis. The response elicited is dependent upon the type and extent of damage sustained, with the ultimate goal of preventing propagation of the damaged DNA. A major focus of our studies is to determine the cellular pathways involved in processing damage induced by altered helical structures, specifically triplexes. Our lab has demonstrated that the TFIIH factor XPD occupies a central role in triggering apoptosis in response to triplex-induced DNA strand breaks. We have shown that XPD co-localizes with γH2AX, and its presence is required for the phosphorylation of H2AX tyrosine142, which stimulates the signaling pathway to recruit pro-apoptotic factors to the damage site. Herein, we examine the cellular pathways activated in response to triplex formation and discuss our finding that suggests that XPD-dependent apoptosis plays a role in preserving genomic integrity in the presence of excessive structurally induced DNA damage.