Cargando…
Comparing a few SNP calling algorithms using low-coverage sequencing data
BACKGROUND: Many Single Nucleotide Polymorphism (SNP) calling programs have been developed to identify Single Nucleotide Variations (SNVs) in next-generation sequencing (NGS) data. However, low sequencing coverage presents challenges to accurate SNV identification, especially in single-sample data....
Autores principales: | Yu, Xiaoqing, Sun, Shuying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3848615/ https://www.ncbi.nlm.nih.gov/pubmed/24044377 http://dx.doi.org/10.1186/1471-2105-14-274 |
Ejemplares similares
-
NanoSNP: a progressive and haplotype-aware SNP caller on low-coverage nanopore sequencing data
por: Huang, Neng, et al.
Publicado: (2022) -
Comparison of Genotype Imputation for SNP Array and Low-Coverage Whole-Genome Sequencing Data
por: Deng, Tianyu, et al.
Publicado: (2022) -
Generation of SNP datasets for orangutan population genomics using improved reduced-representation sequencing and direct comparisons of SNP calling algorithms
por: Greminger, Maja P, et al.
Publicado: (2014) -
SNP calling by sequencing pooled samples
por: Raineri, Emanuele, et al.
Publicado: (2012) -
Genome-Wide SNP Calling Using Next Generation Sequencing Data in Tomato
por: Kim, Ji-Eun, et al.
Publicado: (2014)