Cargando…

Population-level effects of clinical immunity to malaria

BACKGROUND: Despite a resurgence in control efforts, malaria remains a serious public-health problem, causing millions of deaths each year. One factor that complicates malaria-control efforts is clinical immunity, the acquired immune response that protects individuals from symptoms despite the prese...

Descripción completa

Detalles Bibliográficos
Autores principales: Keegan, Lindsay T, Dushoff, Jonathan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3848694/
https://www.ncbi.nlm.nih.gov/pubmed/24024630
http://dx.doi.org/10.1186/1471-2334-13-428
_version_ 1782293803666767872
author Keegan, Lindsay T
Dushoff, Jonathan
author_facet Keegan, Lindsay T
Dushoff, Jonathan
author_sort Keegan, Lindsay T
collection PubMed
description BACKGROUND: Despite a resurgence in control efforts, malaria remains a serious public-health problem, causing millions of deaths each year. One factor that complicates malaria-control efforts is clinical immunity, the acquired immune response that protects individuals from symptoms despite the presence of parasites. Clinical immunity protects individuals against disease, but its effects at the population level are complex. It has been previously suggested that under certain circumstances, malaria is bistable: it can persist, if established, in areas where it would not be able to invade. This phenomenon has important implications for control: in areas where malaria is bistable, if malaria could be eliminated until immunity wanes, it would not be able to re-invade. METHODS: Here, we formulate an analytically tractable, dynamical model of malaria transmission to explore the possibility that clinical immunity can lead to bistable malaria dynamics. We summarize what is known and unknown about the parameters underlying this simple model, and solve the model to find a criterion that determines under which conditions we expect bistability to occur. RESULTS: We show that bistability can only occur when clinically immune individuals are more “effective” at transmitting malaria than naïve individuals are. We show how this “effectiveness” includes susceptibility, ability to transmit, and duration of infectiousness. We also show that the amount of extra effectiveness necessary depends on the ratio between the duration of infectiousness and the time scale at which immunity is lost. Thus, if the duration of immunity is long, even a small amount of extra transmission effectiveness by clinically immune individuals could lead to bistability. CONCLUSIONS: We demonstrate a simple, plausible mechanism by which clinical immunity may be causing bistability in human malaria transmission. We suggest that simple summary parameters – in particular, the relative transmission effectiveness of clinically immune individuals and the time scale at which clinical immunity is lost – are key to determining where and whether bistability is happening. We hope these findings will guide future efforts to measure transmission parameters and to guide malaria control efforts.
format Online
Article
Text
id pubmed-3848694
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-38486942013-12-05 Population-level effects of clinical immunity to malaria Keegan, Lindsay T Dushoff, Jonathan BMC Infect Dis Research Article BACKGROUND: Despite a resurgence in control efforts, malaria remains a serious public-health problem, causing millions of deaths each year. One factor that complicates malaria-control efforts is clinical immunity, the acquired immune response that protects individuals from symptoms despite the presence of parasites. Clinical immunity protects individuals against disease, but its effects at the population level are complex. It has been previously suggested that under certain circumstances, malaria is bistable: it can persist, if established, in areas where it would not be able to invade. This phenomenon has important implications for control: in areas where malaria is bistable, if malaria could be eliminated until immunity wanes, it would not be able to re-invade. METHODS: Here, we formulate an analytically tractable, dynamical model of malaria transmission to explore the possibility that clinical immunity can lead to bistable malaria dynamics. We summarize what is known and unknown about the parameters underlying this simple model, and solve the model to find a criterion that determines under which conditions we expect bistability to occur. RESULTS: We show that bistability can only occur when clinically immune individuals are more “effective” at transmitting malaria than naïve individuals are. We show how this “effectiveness” includes susceptibility, ability to transmit, and duration of infectiousness. We also show that the amount of extra effectiveness necessary depends on the ratio between the duration of infectiousness and the time scale at which immunity is lost. Thus, if the duration of immunity is long, even a small amount of extra transmission effectiveness by clinically immune individuals could lead to bistability. CONCLUSIONS: We demonstrate a simple, plausible mechanism by which clinical immunity may be causing bistability in human malaria transmission. We suggest that simple summary parameters – in particular, the relative transmission effectiveness of clinically immune individuals and the time scale at which clinical immunity is lost – are key to determining where and whether bistability is happening. We hope these findings will guide future efforts to measure transmission parameters and to guide malaria control efforts. BioMed Central 2013-09-11 /pmc/articles/PMC3848694/ /pubmed/24024630 http://dx.doi.org/10.1186/1471-2334-13-428 Text en Copyright © 2013 Keegan and Dushoff; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Keegan, Lindsay T
Dushoff, Jonathan
Population-level effects of clinical immunity to malaria
title Population-level effects of clinical immunity to malaria
title_full Population-level effects of clinical immunity to malaria
title_fullStr Population-level effects of clinical immunity to malaria
title_full_unstemmed Population-level effects of clinical immunity to malaria
title_short Population-level effects of clinical immunity to malaria
title_sort population-level effects of clinical immunity to malaria
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3848694/
https://www.ncbi.nlm.nih.gov/pubmed/24024630
http://dx.doi.org/10.1186/1471-2334-13-428
work_keys_str_mv AT keeganlindsayt populationleveleffectsofclinicalimmunitytomalaria
AT dushoffjonathan populationleveleffectsofclinicalimmunitytomalaria