Cargando…
An efficient method for mining cross-timepoint gene regulation sequential patterns from time course gene expression datasets
BACKGROUND: Observation of gene expression changes implying gene regulations using a repetitive experiment in time course has become more and more important. However, there is no effective method which can handle such kind of data. For instance, in a clinical/biological progression like inflammatory...
Autores principales: | Cheng, Chun-Pei, Liu, Yu-Cheng, Tsai, Yi-Lin, Tseng, Vincent S |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3848764/ https://www.ncbi.nlm.nih.gov/pubmed/24267918 http://dx.doi.org/10.1186/1471-2105-14-S12-S3 |
Ejemplares similares
-
Mining differential top-k co-expression patterns from time course comparative gene expression datasets
por: Liu, Yu-Cheng, et al.
Publicado: (2013) -
MiningABs: mining associated biomarkers across multi-connected gene expression datasets
por: Cheng, Chun-Pei, et al.
Publicado: (2014) -
Mining significant high utility gene regulation sequential patterns
por: Zihayat, Morteza, et al.
Publicado: (2017) -
Efficient mining gapped sequential patterns for motifs in biological sequences
por: Liao, Vance Chiang-Chi, et al.
Publicado: (2013) -
Extracting regulatory modules from gene expression data by sequential pattern mining
por: Kim, Mingoo, et al.
Publicado: (2011)