Cargando…
Predicting whole genome protein interaction networks from primary sequence data in model and non-model organisms using ENTS
BACKGROUND: The large-scale identification of physical protein-protein interactions (PPIs) is an important step toward understanding how biological networks evolve and generate emergent phenotypes. However, experimental identification of PPIs is a laborious and error-prone process, and current metho...
Autores principales: | Rodgers-Melnick, Eli, Culp, Mark, DiFazio, Stephen P |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3848842/ https://www.ncbi.nlm.nih.gov/pubmed/24015873 http://dx.doi.org/10.1186/1471-2164-14-608 |
Ejemplares similares
-
Inferring the evolutionary history of Populus trichocarpa from whole genome resequencing data
por: DiFazio, Stephen, et al.
Publicado: (2011) -
WholeCellViz: data visualization for whole-cell models
por: Lee, Ruby, et al.
Publicado: (2013) -
PARRoT- a homology-based strategy to quantify and compare RNA-sequencing from non-model organisms
por: Gan, Ruei-Chi, et al.
Publicado: (2016) -
Using phylogenetically-informed annotation (PIA) to search for light-interacting genes in transcriptomes from non-model organisms
por: Speiser, Daniel I, et al.
Publicado: (2014) -
A new tool for prioritization of sequence variants from whole exome sequencing data
por: Glanzmann, Brigitte, et al.
Publicado: (2016)