Cargando…

NAB-1 instructs synapse assembly by linking adhesion molecules and F-actin to active zone proteins

During synaptogenesis, macromolecular protein complexes assemble at the pre- and postsynaptic membrane. Extensive literature identifies numerous transmembrane molecules sufficient to induce synapse formation and several intracellular scaffolding molecules responsible for assembling active zones and...

Descripción completa

Detalles Bibliográficos
Autores principales: Chia, Poh Hui, Patel, Maulik, Shen, Kang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3848868/
https://www.ncbi.nlm.nih.gov/pubmed/22231427
http://dx.doi.org/10.1038/nn.2991
Descripción
Sumario:During synaptogenesis, macromolecular protein complexes assemble at the pre- and postsynaptic membrane. Extensive literature identifies numerous transmembrane molecules sufficient to induce synapse formation and several intracellular scaffolding molecules responsible for assembling active zones and recruiting synaptic vesicles. However, little is known about the molecular mechanisms coupling membrane receptors to active zone molecules during development. Using C.elegans, we identify an F-actin network present at nascent presynaptic terminals required for presynaptic assembly. We unravel a sequence of events where specificity-determining adhesion molecules define the location of developing synapses and locally assemble F-actin. Next, an adaptor protein NAB-1/Neurabin binds to F-actin and recruits active zone proteins, SYD-1 and SYD-2/Liprin-α by forming a tripartite complex. NAB-1 localizes transiently to synapses during development and is required for presynaptic assembly. Together, we identify a role for the actin cytoskeleton during presynaptic development and characterize a molecular pathway where NAB-1 links synaptic partner recognition to active zone assembly.