Cargando…
Learning a Markov Logic network for supervised gene regulatory network inference
BACKGROUND: Gene regulatory network inference remains a challenging problem in systems biology despite the numerous approaches that have been proposed. When substantial knowledge on a gene regulatory network is already available, supervised network inference is appropriate. Such a method builds a bi...
Autores principales: | Brouard, Céline, Vrain, Christel, Dubois, Julie, Castel, David, Debily, Marie-Anne, d’Alché-Buc, Florence |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3849013/ https://www.ncbi.nlm.nih.gov/pubmed/24028533 http://dx.doi.org/10.1186/1471-2105-14-273 |
Ejemplares similares
-
Inferring biological networks with output kernel trees
por: Geurts, Pierre, et al.
Publicado: (2007) -
OKVAR-Boost: a novel boosting algorithm to infer nonlinear dynamics and interactions in gene regulatory networks
por: Lim, Néhémy, et al.
Publicado: (2013) -
Improved Small Molecule Identification through Learning Combinations of Kernel Regression Models
por: Brouard, Céline, et al.
Publicado: (2019) -
Evolutionary approaches for the reverse-engineering of gene regulatory networks: A study on a biologically realistic dataset
por: Auliac, Cédric, et al.
Publicado: (2008) -
Fast metabolite identification with Input Output Kernel Regression
por: Brouard, Céline, et al.
Publicado: (2016)