Cargando…
Plasma microRNA-133a is a new marker for both acute myocardial infarction and underlying coronary artery stenosis
BACKGROUND: Previous study demonstrated that miR-133a was released into blood from injured myocardium in cardiovascular diseases. However, the dynamic change of circulating miR-133a level in the early phase of acute myocardial infarction (AMI) and the correlation between miR-133a and severity of cor...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3849017/ https://www.ncbi.nlm.nih.gov/pubmed/24053180 http://dx.doi.org/10.1186/1479-5876-11-222 |
Sumario: | BACKGROUND: Previous study demonstrated that miR-133a was released into blood from injured myocardium in cardiovascular diseases. However, the dynamic change of circulating miR-133a level in the early phase of acute myocardial infarction (AMI) and the correlation between miR-133a and severity of coronary stenosis in coronary heart disease (CHD) patients are not clear. METHODS AND RESULTS: Three different cohorts (including 13 AMI patients, 176 angina pectoris patients and 127 control subjects) were enrolled to investigate the expression levels of circulating miR-133a in patients with myocardial ischemia and also the relationship between plasma miR-133a and severity of coronary stenosis. Plasma miR-133a levels of participants were examined by real-time quantitative PCR. Simultaneously, plasma cardiac troponin I (cTnI) concentrations were measured by ELISA assays. The results showed that circulating miR-133a level was significantly increased in AMI patients in time-dependent manner, and achieved a 72.1 fold peak at 21.6 ± 4.5 hours after the onset of AMI symptoms and exhibited a similar trend to plasma cTnI level. We also found that plasma miR-133a levels were higher in CHD patients than control group. Importantly, the levels of circulating miR-133a positively correlated with the severities of the coronary artery stenosis. Receiver operating characteristic (ROC) analysis revealed that circulating miR-133a had considerable diagnostic accuracy for CHD with an AUC of 0.918 (95% confidence interval 0.877-0.960). CONCLUSIONS: Circulating miR-133a may be a new biomarker for AMI and as a potential diagnostic tool. And increased miR-133a level may be used to predict both the presence and severity of coronary lesions in CHD patients. |
---|