Cargando…
The four ingredients of single-sequence RNA secondary structure prediction. A unifying perspective
Any method for RNA secondary structure prediction is determined by four ingredients. The architecture is the choice of features implemented by the model (such as stacked basepairs, loop length distributions, etc.). The architecture determines the number of parameters in the model. The scoring scheme...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Landes Bioscience
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3849167/ https://www.ncbi.nlm.nih.gov/pubmed/23695796 http://dx.doi.org/10.4161/rna.24971 |
_version_ | 1782293885830037504 |
---|---|
author | Rivas, Elena |
author_facet | Rivas, Elena |
author_sort | Rivas, Elena |
collection | PubMed |
description | Any method for RNA secondary structure prediction is determined by four ingredients. The architecture is the choice of features implemented by the model (such as stacked basepairs, loop length distributions, etc.). The architecture determines the number of parameters in the model. The scoring scheme is the nature of those parameters (whether thermodynamic, probabilistic, or weights). The parameterization stands for the specific values assigned to the parameters. These three ingredients are referred to as “the model.” The fourth ingredient is the folding algorithms used to predict plausible secondary structures given the model and the sequence of a structural RNA. Here, I make several unifying observations drawn from looking at more than 40 years of methods for RNA secondary structure prediction in the light of this classification. As a final observation, there seems to be a performance ceiling that affects all methods with complex architectures, a ceiling that impacts all scoring schemes with remarkable similarity. This suggests that modeling RNA secondary structure by using intrinsic sequence-based plausible “foldability” will require the incorporation of other forms of information in order to constrain the folding space and to improve prediction accuracy. This could give an advantage to probabilistic scoring systems since a probabilistic framework is a natural platform to incorporate different sources of information into one single inference problem. |
format | Online Article Text |
id | pubmed-3849167 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Landes Bioscience |
record_format | MEDLINE/PubMed |
spelling | pubmed-38491672013-12-12 The four ingredients of single-sequence RNA secondary structure prediction. A unifying perspective Rivas, Elena RNA Biol Research Paper Any method for RNA secondary structure prediction is determined by four ingredients. The architecture is the choice of features implemented by the model (such as stacked basepairs, loop length distributions, etc.). The architecture determines the number of parameters in the model. The scoring scheme is the nature of those parameters (whether thermodynamic, probabilistic, or weights). The parameterization stands for the specific values assigned to the parameters. These three ingredients are referred to as “the model.” The fourth ingredient is the folding algorithms used to predict plausible secondary structures given the model and the sequence of a structural RNA. Here, I make several unifying observations drawn from looking at more than 40 years of methods for RNA secondary structure prediction in the light of this classification. As a final observation, there seems to be a performance ceiling that affects all methods with complex architectures, a ceiling that impacts all scoring schemes with remarkable similarity. This suggests that modeling RNA secondary structure by using intrinsic sequence-based plausible “foldability” will require the incorporation of other forms of information in order to constrain the folding space and to improve prediction accuracy. This could give an advantage to probabilistic scoring systems since a probabilistic framework is a natural platform to incorporate different sources of information into one single inference problem. Landes Bioscience 2013-07-01 2013-05-10 /pmc/articles/PMC3849167/ /pubmed/23695796 http://dx.doi.org/10.4161/rna.24971 Text en Copyright © 2013 Landes Bioscience http://creativecommons.org/licenses/by-nc/3.0/ This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited. |
spellingShingle | Research Paper Rivas, Elena The four ingredients of single-sequence RNA secondary structure prediction. A unifying perspective |
title | The four ingredients of single-sequence RNA secondary structure prediction. A unifying perspective |
title_full | The four ingredients of single-sequence RNA secondary structure prediction. A unifying perspective |
title_fullStr | The four ingredients of single-sequence RNA secondary structure prediction. A unifying perspective |
title_full_unstemmed | The four ingredients of single-sequence RNA secondary structure prediction. A unifying perspective |
title_short | The four ingredients of single-sequence RNA secondary structure prediction. A unifying perspective |
title_sort | four ingredients of single-sequence rna secondary structure prediction. a unifying perspective |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3849167/ https://www.ncbi.nlm.nih.gov/pubmed/23695796 http://dx.doi.org/10.4161/rna.24971 |
work_keys_str_mv | AT rivaselena thefouringredientsofsinglesequencernasecondarystructurepredictionaunifyingperspective AT rivaselena fouringredientsofsinglesequencernasecondarystructurepredictionaunifyingperspective |